Skip to main content

Theoretical Model and Suppressing Method of Interface Charge Accumulation in HVDC Cable Accessory: A Review

  • Chapter
  • First Online:
Polymer Insulation Applied for HVDC Transmission
  • 795 Accesses

Abstract

HVDC cable has been widely used with the development of flexible HVDC transmission. Cable accessories are the weakest part of HVDC cables, while the most serious problem of DC cable joint is the uneven distribution of electric field caused by space charge accumulation, which may lead to the ageing and failure of joint insulation, especially at the interface between different materials. In this paper, the progress of the interface charge research of the HVDC cable accessories is discussed, the existing theoretical model and the suppression method of the interface charge are analysed, and the research trend of the interface charge of the accessories in the future is prospected. The results show that space charges accumulate at the interface between different material are closely related to temperature, applied electric field and working conditions such as polarity reversal, etc.; the Maxwell-Wagners-Sillars theory and bipolar charge transport model are discussed in detail, and the method of using quantum chemical theory to calculate and analyse interface charges is introduced; the methods of interface charge suppression based on geometry design, surface modification, field grading materials and material selection are analysed and compared. The summary and conclusion of these research results can provide reference for the future research on the interface charge behaviours and suppression methods of HVDC cable accessories

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y.H. Liu, J. Arrillaga, N.R. Watson, Addition of four-quadrant power controllability to multi-level VSC HVDC transmission. IET Gen. Trans. Distribu. 1(6), 872–878 (2007). https://doi.org/10.1049/iet-gtd:20070097

    Article  Google Scholar 

  2. W. Long, S. Nilsson, HVDC transmission: Yesterday and today. IEEE Power Ener. Mag. 5(2), 22–31 (2007). https://doi.org/10.1109/MPAE.2007.329175

    Article  Google Scholar 

  3. T. An, G.F. Tang, W.N. Wang, Research and application on multi-terminal and DC grids based on VSC-HVDC technology in China. High Volt. 2(1), 1–10 (2017). https://doi.org/10.1049/hve.2017.0010

    Article  Google Scholar 

  4. J.L. He, G. Chen, Insulation materials for HVDC polymeric cables. IEEE Trans. Dielectr. Electr. Insul. 24(6), 1307–1307 (2017). https://doi.org/10.1109/TDEI.2017.006721

    Article  Google Scholar 

  5. P. Han, J.W. Zha, S.J. Wang et al., Theoretical analysis and application of polymer-matrix field grading materials in HVDC cable terminals. High Volt. 2(1), 39–46 (2017). https://doi.org/10.1049/hve.2016.0067

    Article  Google Scholar 

  6. T. Takada, T. Tohmine, Y. Tanaka, J. Li, Space charge accumulation in double-layer dielectric systems—measurement methods and quantum chemical calculations. IEEE Electr. Insul. Mag. 35(5), 36–46 (2019)

    Article  Google Scholar 

  7. Y. Sakai, H. Niinobe, T. Hirasawa, Development of pre-molded accessories for HVDC extruded cable system (Versailles, France, June, Inter. Conf. Insul. Power Cables, 2011), p. A23

    Google Scholar 

  8. B.X. Du, J. Li, Effects of ambient temperature on surface charge and flashover of heat-shrinkable polymer under polarity reversal voltage. IEEE Trans. Dielectr. Electr. Insul. 23(2), 1190–1197 (2016). https://doi.org/10.1109/TDEI.2015.005182

    Article  Google Scholar 

  9. B.X. Du, Z.R. Yang, Z.L. Li et al., Surface charge behavior of silicone rubber/SiC composites with field-dependent conductivity. IEEE Trans. Dielectr. Electr. Insul. 24(3), 1340–1348 (2017). https://doi.org/10.1109/TDEI.2017.006137

    Article  Google Scholar 

  10. D.W. Auckland, W. Su, B.R. Varlow, Nonlinear fillers in electrical insulation. IEE Proc.-Sci. Measur. Technol. 144(3), 127–133 (1997). https://doi.org/10.1049/ip-smt:19971085

  11. D. Fabiani, G.C. Montanari, C. Laurent et al., Polymeric HVDC cable design and space charge accumulation. Part 1: Insulation/semicon interface. IEEE Electr. Insul. Mag. 23(6), 11–19 (2007). https://doi.org/10.1109/MEI.2007.4389975

    Article  Google Scholar 

  12. C.Y. Li, C.J. Lin, G. Chen et al., Field-dependent charging phenomenon of HVDC spacers based on dominant charge behaviors. Appl. Phys. Lett. 20, 202904 (2019)

    Article  Google Scholar 

  13. S. Delpino, D. Fabiani, G. C. Montanari, et al., Polymeric HVDC cable design and space charge accumulation. Part 2: insulation interfaces. IEEE Electr. Insul. Mag. 24(1), 14–24 (2008). https://doi.org/10.1109/mei.2008.4455499

  14. G. Chen, M. Hao, Z. Xu et al., Review of high voltage direct current cables. CSEE J. Power Ener. Sys. 1(2), 9–21 (2015). https://doi.org/10.17775/CSEEJPES.2015.00015

    Article  Google Scholar 

  15. T.T.N. Vu, G. Teyssedre, S.L. Roy, et al., Maxwell–wagner effect in multi-layered dielectrics: interfacial charge measurement and modelling. Tech. 5(2), 27 (2017). https://doi.org/10.3390/technologies5020027

  16. P.H.F. Morshuis, R. Bodega, D. Fabiani et al., Dielectric interfaces in DC constructions: space charge and polarization phenomena (Winchester, United kingdom, July, IEEE Int. Conf. Solid Dielectr., 2007), pp. 450–453

    Google Scholar 

  17. Lan, L.: ‘Effect of temperature on space charge distribution in polymer insulation’, Shanghai Jiaotong University, 2015

    Google Scholar 

  18. L. Lan, Q. Zhong, Y. Yin et al., Effect of surface fluorination on space charge behavior at LDPE/EPDM interface (Bologna, Italy, June, IEEE Inter. Conf. Solid Dielectr., 2013), pp. 444–447

    Google Scholar 

  19. J. Li, H.C. Liang, B.X. Du et al., Numerical simulation of interface charge behaviors between LDPE/EPDM for HVDC cable accessory insulation based on the bipolar charge transport model. High Volt. Eng. 44(5), 1443–1449 (2018)

    Google Scholar 

  20. J. Li, H.C. Liang, M. Xiao, B.X. Du, T. Takada, Mechanism of deep trap sites in epoxy/graphene nanocomposite using quantum chemical calculation. IEEE Trans. Dielectr. Electr. Insul. 26(5), 2028–2031 (2019)

    Google Scholar 

  21. J.G. Su, B.X. Du, T. Han et al., Multistep and multiscale electron trapping for high-efficiency modulation of electrical degradation in polymer dielectrics. J. Phy. Chem. C 123(12), 7045–7053, (2019)

    Google Scholar 

  22. G. Mazzanti, J. Castellon, G. Chen et al., The insulation of HVDC extruded cable system joints. Part 1: review of materials, design and testing procedures. IEEE Trans. Dielectr. Electr. Insul. 26(3), 964–972 (2019)

    Article  Google Scholar 

  23. R. Bodega, P.H.F. Morshuis, J.J. Smit, Space charge measurements on multi-dielectrics by means of the pulsed electroacoustic method. IEEE Trans. Dielectr. Electr. Insul. 13(2), 272–281 (2006). https://doi.org/10.1109/TDEI.2006.1624272

    Article  Google Scholar 

  24. J. Li, B.X. Du, H. Xu, Suppressing interface charge between LDPE and EPDM for HVDC cable accessory insulation. IEEE Trans. Dielectr. Electr. Insul. 24(3), 1331–1339 (2017). https://doi.org/10.1109/TDEI.2017.006073

    Article  Google Scholar 

  25. T. Christen, L. Donzel, F. Greuter, Nonlinear resistive electric field grading part 1: theory and simulation. IEEE Electr. Insul. Mag. 26(6), 47–59 (2010). https://doi.org/10.1109/MEI.2010.5599979

    Article  Google Scholar 

  26. L. Donzel, F. Greuter, T. Christen, Nonlinear resistive electric field grading part 2: materials and applications. IEEE Electr. Insul. Mag. 27(2), 18–29 (2011). https://doi.org/10.1109/MEI.2011.5739419

    Article  Google Scholar 

  27. A. Gustafsson, M. Jeroense, P. Sunnegardh, M. Saltzer, H. Ghorbani, H. Rapp, New developments within the area of extruded HVDC cables, in Proceedings of the 11th IET International Conference on AC and DC Power Transmission (2015), pp. 1–5

    Google Scholar 

  28. H. Zhong, P. Wang, J. Wang et al., Design of dc cable accessories for suppressing interface space charge. High Volt. Eng. 41(4), 1140–1146 (2015). https://doi.org/10.13336/j.1003-6520.hve.2015.04.011

    Article  Google Scholar 

  29. B.X. Du, J. Li, Interface charge behaviors between LDPE and EPDM filled with carbon black nanoparticles. IEEE Trans. Dielectr. Electr. Insul. 23(6), 3696–3703 (2017). https://doi.org/10.1109/TDEI.2016.005719

    Article  Google Scholar 

  30. J. Li, B. Du, Y. Liu et al., Interface charge distribution between LDPE and carbon black filled EPDM (Montpellier, France, July, IEEE Int. Conf. Dielectr., 2016), pp. 406–409

    Google Scholar 

  31. J. Li, B.X. Du, X.X. Kong, Z.L. Li, Nonlinear conductivity and interface charge behaviors between LDPE and EPDM/SiC composite for HVDC cable accessory. IEEE Trans. Dielectr. Electr. Insul. 24(3), 1566–1573 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research and Development Program of China under the Grant 2016YFB0900701; National Natural Science Foundation of China (51807136 and 51537008); Natural Science Foundation of Tianjin City (18JCQNJC07300); National Postdoctoral Program for Innovative Talents (BX201700168); China Postdoctoral Science Foundation (2017M621070); Project SKLD19KM08 supported by China State Key Lab. of Power System.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boxue Du .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, J., Han, C., Du, B., Takada, T. (2021). Theoretical Model and Suppressing Method of Interface Charge Accumulation in HVDC Cable Accessory: A Review. In: Du, B. (eds) Polymer Insulation Applied for HVDC Transmission. Springer, Singapore. https://doi.org/10.1007/978-981-15-9731-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9731-2_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9730-5

  • Online ISBN: 978-981-15-9731-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics