Skip to main content
Log in

Evolution of Morphology in the Process of Growth of Island Poly(p-xylylene) Films Obtained by Vapor Deposition Polymerization

  • STRUCTURE AND PROPERTIES
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

Using atomic force microscopy, the evolution of the morphology of island poly(p-xylene) films formed on silicon substrates by vapor deposition polymerization at two deposition temperatures of +23 and 0°C and a fixed monomer flow is studied. The dependences of the surface coverage, the effective thickness of the island coating, and the density and average size of the polymer islands on the deposition time are investigated. Within the framework of the dynamic scaling theory, the size distribution of islands and the size distribution of their capture zones are analyzed. It is shown that the observed features of the evolution of the morphology of island poly(p-xylylene) films cannot be fully described in the framework of classical models based on diffusion-limited aggregation. However, they can be explained by the reversibility of aggregation, which is a specific feature of the polymeric nature of the island coatings being formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. W. F. Beach, in Encyclopedia of Polymer Science and Technology (Wiley, New York, 2004), p. 587.

    Google Scholar 

  2. J. G. Amar, F. Family, and P. M. Lam, Phys. Rev. B: Condens. Matter Mater. Phys. 50, 8781 (1994).

    Article  CAS  Google Scholar 

  3. J. G. Amar and F. Family, Phys. Rev. Lett. 74, 2066 (1995).

    Article  CAS  Google Scholar 

  4. T. L. Einstein, A. Pimpinelli, and D. L. González, J. Cryst. Growth 401, 67 (2014).

    Article  CAS  Google Scholar 

  5. T. L. Einstein, J. R. Morales-Cifuentes, D. L. Gonzalez, and A. Pimpinelli, J. Phys.: Conf. Ser. 640, 012024 (2015).

    Google Scholar 

  6. Y. Han, M. Li, and J. W. Evans, J. Chem. Phys. 145, 211911 (2016).

    Article  Google Scholar 

  7. P. A. Mulheran and J. A. Blackman, Philos. Mag. Lett. 72, 55 (1995).

    Article  CAS  Google Scholar 

  8. A. Winkler, Surf. Sci. 643, 124 (2016).

    Article  CAS  Google Scholar 

  9. A. Choukourov, I. Melnichuk, I. Gordeev, O. Kylián, J. Hanuš, J. Kousal, P. Solař, L. Hanyková, J. Brus, D. Slavínská, and H. Biederman, Thin Solid Films 565, 249 (2014).

    Article  CAS  Google Scholar 

  10. L. Tumbek, C. Gleichweit, K. Zojer, and A. Winkler, Phys. Rev. B: Condens. Matter Mater. Phys. 86, 085402 (2012).

    Article  Google Scholar 

  11. A. Pimpinelli, L. Tumbek, and A. Winkler, J. Phys. Chem. Lett. 5, 995 (2014).

    Article  CAS  Google Scholar 

  12. A. Venables and H. Brune, Phys. Rev. B: Condens. Matter Mater. Phys. 66, 195404 (2002).

    Article  Google Scholar 

  13. D. Kandel, Phys. Rev. Lett. 78, 499 (1997).

    Article  CAS  Google Scholar 

  14. Y. P. Zhao, A. R. Hopper, G. C. Wang, and T. M. Lu, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 60, 4310 (1999).

    CAS  Google Scholar 

  15. I. J. Lee, M. Yun, S. M. Lee, and J. Y. Kim, Phys. Rev. B: Condens. Matter Mater. Phys. 78, 115427 (2008).

    Article  Google Scholar 

  16. I. J. Lee and M. Yun, Macromolecules 43, 5450 (2010).

    Article  CAS  Google Scholar 

  17. D. Kirkpatrick and B. Wunderlich, Makromol. Chem. 186, 2595 (1985).

    Article  CAS  Google Scholar 

  18. W. F. Gorham, J. Polym. Sci., Part A-1: Polym. Chem. 4, 3027 (1966).

    CAS  Google Scholar 

  19. Handbook of Silicon Water Cleaning Technology. Materials Science and Process Technology, Ed. by K. A. Reinhardt and W. Kern (William Andrew, New York, 2008).

    Google Scholar 

  20. Gwyddion. www.gwyddion.net. Cited 2019.

  21. A. A. Bukharaev, S. A. Ziganshina, and A. P. Chuklanov, Nanotechnol. Russ. 5, 364 (2010).

    Article  Google Scholar 

  22. R. C. Gonzalez and R. E. Woods, Digital Image Processing (Prentice Hall, New Jersey, 2008).

    Google Scholar 

  23. J. J. Senkevich, S. B. Desu, and V. Simkovic, Polymer 41, 2379 (2000).

    Article  CAS  Google Scholar 

  24. A. Gieldon, C. Czaplewski, K. Smalara, and M. Bobrowski, J. Mol. Model. 17, 2725 (2011).

    Article  CAS  Google Scholar 

  25. S. Y. Park, J. Blackwell, S. N. Chvalun, A. A. Nikolaev, K. A. Mailyan, A. V. Pebalk, and I. E. Kardash, Polymer 41, 2937 (2000).

    Article  CAS  Google Scholar 

  26. J. B. Fortin and T. M. Lu, Chem. Mater. 14, 1945 (2002).

    Article  CAS  Google Scholar 

  27. J. W. Evans, P. A. Thiel, and M. C. Bartelt, Surf. Sci. Rep. 61, 1 (2006).

    Article  CAS  Google Scholar 

  28. J. A. Blackman and P. A. Mulheran, Phys. Rev. B: Condens. Matter Mater. Phys. 54, 11681 (1996).

    Article  CAS  Google Scholar 

  29. L. A. Errede, R. S. Gregorian, and J. M. Hoyt, J. Am. Chem. Soc. 82, 5218 (1960).

    Article  CAS  Google Scholar 

  30. D. R. Streltsov, A. I. Buzin, P. V. Dmitryakov, P. Kamasa, D. A. Ivanov, and S. N. Chvalun, Thermochim. Acta 643, 65 (2016).

    Article  CAS  Google Scholar 

  31. G. Berlanda, M. Campione, M. Moret, A. Sassell, and A. Borghesi, Phys. Rev. B: Condens. Matter Mater. Phys. 69, 085409 (2004).

    Article  Google Scholar 

  32. P. R. Ribič, V. Kalihari, C. D. Frisbie, and G. Bratina, Phys. Rev. B: Condens. Matter Mater. Phys. 80, 115307 (2009).

    Article  Google Scholar 

  33. J. Yang, T. Wang, H. Wang, F. Zhu, G. Li, and D. Yan, J. Phys. Chem. B 112, 7816 (2008).

    Article  CAS  Google Scholar 

  34. J. Albia and M. A. Albao, J. Vac. Sci. Technol., A 33, 021404 (2015).

    Article  Google Scholar 

  35. J. K. Zuo and J. F. Wendelken, Phys. Rev. Lett. 66, 2227 (1991).

    Article  CAS  Google Scholar 

  36. Y. Han, E. Gaudry, T. J. Oliveira, and J. W. Evans, J. Chem. Phys. 145, 211904 (2016).

    Article  Google Scholar 

  37. J. R. Albia and M. A. Albao, Phys. Rev. E 95, 1 (2017).

    Article  Google Scholar 

  38. D. L. González, A. Pimpinelli, and T. L. Einstein, Phys. Rev. E 96, 23 (2017).

    Article  Google Scholar 

  39. K. Smalara, A. Gieldon, M. Bobrowski, J. Rybicki, and C. Czaplewski, J. Phys. Chem. A 114, 4296 (2010).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

AFM measurements were performed on the equipment of the Probe and Electron Microscopy Resource Center of the National Research Center Kurchatov Institute.

Funding

This work was supported by the Russian Foundation for Basic Research (project nos. 18-33-00600 and 18-00-00427).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Mitko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitko, A.S., Streltsov, D.R., Dmitryakov, P.V. et al. Evolution of Morphology in the Process of Growth of Island Poly(p-xylylene) Films Obtained by Vapor Deposition Polymerization. Polym. Sci. Ser. A 61, 555–564 (2019). https://doi.org/10.1134/S0965545X19050122

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X19050122

Navigation