Skip to main content
Log in

Infrared Spectra and Structure of Solid Polymer Electrolytes Based on Poly(vinyl alcohol) and Lithium Halides

  • STRUCTURE AND PROPERTIES
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

Films obtained from the aqueous solutions of poly(vinyl alcohol) and MX salts, where M = Li, Na, K, and Cs and X = Cl, Br, and I (salt concentration is 10 mol % in relation to the polymer) are studied by Fourier transform infrared spectroscopy. It is shown that the degree of crystallinity of PVA films containing non-lithium salts is higher by a factor of 1.5 than that of the film without salt (51–57 and 37%, respectively), while films with lithium salts contain an almost completely amorphous polymer (0–7%). It is shown that lithium salts completely dissolve in the polymer, while the non-lithium ones exhibit only a partial dissolution. Salt addition leads to the shift of maximum of the band corresponding to the stretching vibrations of PVA hydroxyl groups. Direction and value of the shift depend on the size of anion and cation of the added salt. This fact is explained by the breakage of ОН···ОН hydrogen bonds and formation of OH···Х bonds and donor-acceptor M+···OH bonds between ions of salts and ОН groups of the polymer. These bond strengths decrease in the sequence Cl > Br > I and Li+ > Na+ > K+ > Cs+. A high solubility of lithium salts in PVA and the suppression of its crystallization by these salts are provided by a high affinity of the oxygen atom of ОН group of the polymer for the lithium ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. J. M. Tarascon and M. Armand, Nature 414, 359 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. W. H. Meyer, Adv. Mater. 10, 439 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. M. A. Ratner and D. F. Shriver, Chem. Rev. 88, 109 (1988).

    Article  CAS  Google Scholar 

  4. L. Yue, J. Ma, J. Zhang, J. Zhao, S. Dong, Z. Liu, G. Cui, and L. Chen, Energy Storage Mater. 5, 139 (2016).

    Article  Google Scholar 

  5. T. Yamamoto, M. Inami, and T. Kanbara, Chem. Mater. 6, 44 (1994).

    Article  CAS  Google Scholar 

  6. X. L. Hu, G. M. How, M. Q. Zhang, M. Z. Rong, W. H. Ruan, and E. P. Giannelis, J. Mater. Chem. 22, 18961 (2012).

    Article  CAS  Google Scholar 

  7. Y. Ma, L. B. Li, G. X. Gao, X. Y. Yang, Y. You, Electrochim. Acta 187, 535 (2016).

    Article  CAS  Google Scholar 

  8. G. Ek, F. Jeschull, T. Bowden, and D. Brandell, Electrochim. Acta 246, 208 (2017).

    Article  CAS  Google Scholar 

  9. O. N. Tretinnikov and S. A. Zagorskaya, Polym. Sci., Ser. A 55, 463 (2013).

    Article  CAS  Google Scholar 

  10. O. N. Tretinnikov and S. A. Zagorskaya, J. Appl. Spectrosc. 79, 521 (2012).

    Article  CAS  Google Scholar 

  11. D. K. Buslov, N. I. Sushko, and O. N. Tretinnikov, Polym. Sci., Ser. A 53, 1121 (2011).

    Article  CAS  Google Scholar 

  12. H. Todokoro, S. Seki, and T. Nitta, Bull. Chem. Soc. Jpn. 28, 559 (1955).

    Article  Google Scholar 

  13. V. N. Lebedeva, G. I. Distler, and E. I. Kortukova, Vysokomol. Soedin., Ser. A 9, 2076 (1967).

    CAS  Google Scholar 

  14. T. Motojima, S. Ikawa, and M. Kamura, J. Quant. Spectrosc. Radiat. Transfer 26, 177 (1981).

    Article  CAS  Google Scholar 

  15. H. M. Lee, P. Tarakeshwar, J. Park, M. R. Kolaski, Y. J. Yoon, H. B. Yi, and K. S. Kim, J. Phys. Chem. A 108, 2949 (2004).

    Article  CAS  Google Scholar 

  16. D. J. Miller and J. M. Lisy, J. Am. Chem. Soc. 130, 15393 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. A. Allerhand and P. von Rague Schleyer, J. Am. Chem. Soc. 85, 1233 (1963).

    Article  CAS  Google Scholar 

  18. I. D. Kuntz and C. J. Cheng, J. Am. Chem. Soc. 97, 4852 (1975).

    Article  CAS  Google Scholar 

  19. Z. Huang, W. Hua, D. Verreault, and H. C. Allen, J. Phys. Chem. A 117, 6346 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. O. M. Cabarcos, C. J. Weinheimer, T. J. Martınez, and J. M. Lisy, J. Chem. Phys. 110, 9516 (1999).

    Article  CAS  Google Scholar 

  21. N. L. Ma, F. M. Siu, and C. W. Tsang, Chem. Phys. Lett. 322, 65 (2000).

    Article  CAS  Google Scholar 

  22. A. V. Iogansen, “Infrared Spectroscopy and the Spectral Determination of the Hydrogen Bond,” in Hydrogen Bond, Ed. by N. D. Sokolov (Nauka, Moscow, 1981), p. 112.

    Google Scholar 

  23. B. A. Zilles and W. B. Person, J. Chem. Phys. 79, 65 (1983).

    Article  CAS  Google Scholar 

  24. W. H. Thompson and J. T. Hynes, J. Am. Chem. Soc. 122, 6278 (2000).

    Article  CAS  Google Scholar 

  25. H. Coker, J. Phys. Chem. 80, 2078 (1976).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Tretinnikov.

Additional information

Translated by P. Vlasov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zagorskaya, S.A., Tretinnikov, O.N. Infrared Spectra and Structure of Solid Polymer Electrolytes Based on Poly(vinyl alcohol) and Lithium Halides. Polym. Sci. Ser. A 61, 21–28 (2019). https://doi.org/10.1134/S0965545X19010115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X19010115

Navigation