Skip to main content
Log in

Through Permeability of Polyvinylidene Fluoride Piezoactive Porous Films

  • Structure and Properties
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

Polyvinylidene f luoride porous films containing through channels have been prepared for the first time. The films have been obtained via melt extrusion followed by annealing, uniaxial extension, and thermal fixation. Uniaxial extension has been carried out in two stages (“cold” and “hot” drawing) at room and elevated temperature, respectively. The effect of orientation efforts during formation of the porous structure of films on the overall porosity, permeability for liquids, the content of piezoactive β- phase in the crystalline part of sample, and piezo modulus d31 has been studied. The formation of through channels occurs via a percolation mechanism at the overall porosity of 23%. Under uniaxial extension of films, the pore formation competes with the polymorphic α → β transition. The conditions of porous film preparation allowing one to attain the maximum through permeability and piezo modulus values have been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Khayet, C. Y. Feng, K. C. Khulbe, and T. Matsuura, Polymer 43, 3879 (2002).

    Article  CAS  Google Scholar 

  2. K. H. Oshima, T. T. Evaws-Strickfaden, A. K. Highsmith, and E. W. Ades, Biologicals 24, 137 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. G. Zukowska, M. Rogowska, E. Weczkowska, and W. Wieczorek, Solid State Ionics 119, 289 (1999).

    Article  CAS  Google Scholar 

  4. W. H. Seol, Y. M. Lee, and J. K. J. Park, Power Sources 163, 247 (2006).

    Article  CAS  Google Scholar 

  5. J. Kong and K. J. Li, J. Appl. Polym. Sci. 81, 1643 (2001).

    Article  CAS  Google Scholar 

  6. T. Masakazu, Y. Hitoshi, and I. Koubc, US Patent No. 6299773 (2001).

    Google Scholar 

  7. D. Wang, K. Li, and W. K. Teo, J. Membr. Sci. 163, 211 (1999).

    Article  CAS  Google Scholar 

  8. M. Cheryan, Ultrafiltration and Microfiltration Handbook (CRC Press, Boca Raton, 1998).

    Book  Google Scholar 

  9. M. Takamura and H. Yoshida, US Patent No. 6299773 (1999).

    Google Scholar 

  10. I. Yu. Dmitriev, V. Bukošek, V. K. Lavrentyev, and G. K. Elyashevich, Acta Chim. Slov. 54, 784 (2007).

    CAS  Google Scholar 

  11. C. Lei, B. Hu, R. Xu, Q. Cai, and W. Shi, J. Appl. Polym. Sci. 131, 400077 (2014).

    Google Scholar 

  12. F. Sadeghi, S. H. Tabatabaei, A. Ajji, and P. J. Carreau, J. Polym. Sci., Polym. Phys. Ed. 47, 1219 (2009).

    Article  CAS  Google Scholar 

  13. A. Salimi and A. A. Yousefi, Polym. Test. 22, 699 (2003).

    Article  CAS  Google Scholar 

  14. B. Hu, Q. Cai, R. Xu, H. Mo, C. Chen, F. Zhang, and C. Lei, J. Plast. Film Sheeting 31, 269 (2015).

    Article  CAS  Google Scholar 

  15. D. Stauffer and A. Aharony, Introduction to Percolation Theory (Taylor and Francis, London, 1994).

    Google Scholar 

  16. G. K. Elyashevich, E. Yu. Rozova, and E. A. Karpov, RF Patent No. 2140936 (1997).

    Google Scholar 

  17. G. K. Elyashevich, A. G. Kozlov, and E. Yu. Rozova, Vysokomol. Soedin., Ser. A 40 (6), 956 (1998).

    CAS  Google Scholar 

  18. I. S. Kuryndin, V. K. Lavrentyev, V. Bukošek, and G. K. Elyashevich, Polym. Sci., Ser. A 57 (6), 717 (2015).

    Article  CAS  Google Scholar 

  19. G. K. Elyashevich, D. V. Novikov, I. S. Kuryndin, A. Jelen, and V. Bukošek, Acta Chim. Slov. 64, 980 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. I. Yu. Dmitriev, V. K. Lavrentyev, and G. K. Elyashevich, Polym. Sci., Ser. A 48 (3), 272 (2006).

    Article  Google Scholar 

  21. B. Hu, C. Lei, R. Xu, W. Shi, Q. Cai, H. Mo, and C. Chen, J. Plast. Film Sheeting 30, 300 (2014).

    Article  CAS  Google Scholar 

  22. F. Liu, N. A. Hashim, Yu. Liu, M. R. M. Abed, and K. Li, J. Membr. Sci. 375, 1 (2011).

    Article  CAS  Google Scholar 

  23. K. S. Ramadan, D. Sameoto, and S. Evoy, Smart Mater. Struct. 23, 033001 (2014).

    Article  CAS  Google Scholar 

  24. C.-H. Du, Y.-Y. Xu, and B.-K. Zhu, J. Appl. Polym. Sci. 106, 1793 (2007).

    Article  CAS  Google Scholar 

  25. V. V. Kochervinskii, Russ. Chem. Rev. 65, 865 (1996).

    Article  Google Scholar 

  26. V. V. Kochervinskii, N. V. Kozlova, A. Y. Khnykov, M. A. Shcherbina, S. N. Sulyanov, and K. A. Dembo, J. Appl. Polym. Sci. 116, 695 (2010).

    CAS  Google Scholar 

  27. I. Yu. Dmitriev, I. S. Kuryndin, V. K. Lavrentyev, and G. K. Elyashevich, Phys. Solid State 59, 1041 (2017).

    Article  CAS  Google Scholar 

  28. I. Yu. Dmitriev, I. S. Kuryndin, and G. K. Elyashevich, RF Patent No. 2635804 (2017).

    Google Scholar 

  29. G. A. Lushcheikin, Polymer Piezoelectrics (Khimiya, Moscow, 1990) [in Russian].

    Google Scholar 

  30. M. T. Darestani, H. G. L. Coster, T. C. Chilcott, S. Fleming, V. Nagarajan, and H. An, J. Membr. Sci. 434, 184 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. K. Elyashevich.

Additional information

Original Russian Text © G.K. Elyashevich, I.S. Kuryndin, V.K. Lavrentyev, I.Yu. Dmitriev, 2018, published in Vysokomolekulyarnye Soedineniya, Seriya A, 2018, Vol. 60, No. 6, pp. 452–460.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elyashevich, G.K., Kuryndin, I.S., Lavrentyev, V.K. et al. Through Permeability of Polyvinylidene Fluoride Piezoactive Porous Films. Polym. Sci. Ser. A 60, 734–741 (2018). https://doi.org/10.1134/S0965545X18060032

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X18060032

Navigation