Skip to main content
Log in

High-rate deformation of polymer melts as discrete media: Justification of the model

  • Rheology
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

Theoretical arguments and experimental data that can be considered a justification for a new behavioristic model of viscoelastic polymer melts and concentrated solutions in the domain of high rates (stresses) have been collected and discussed. This domain corresponds to the rubbery-like state of the matter. Two basic conditions are met: (i) rubbery (reversible) deformations are dominant over irreversible deformations to such an extent that the flow (dissipative losses) can be completely neglected and the medium can be treated as elastic; (ii) the material structure becomes strongly heterogeneous and consists in local bundles of entanglements connected by intermediary chains. As a consequence, this structure can be considered a discrete system analogous to highly concentrated suspensions of soft (deformable) particles. These basic assumptions were used to construct a new nonlinear model describing the mechanical behavior of entangled polymer melts and concentrated solutions (A. V. Semakov and V. G. Kulichikhin, Polym. Sci., Ser. A. 51, 1313–1328 (2009)). This model correctly predicts the chaos-to-order transition and self-organization at high deformation rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. McLeish, Rheol. Acta 47, 479 (2008).

    Article  CAS  Google Scholar 

  2. A. E. Likhman, Macromolecules 38, 6128 (2005).

    Article  Google Scholar 

  3. D. M. Nair and J. D. Schreiber, Macromolecules 39, 3386 (2006).

    Article  CAS  Google Scholar 

  4. R. J. Blackwell, O. G. Harlen, and T. C. B. McLeish, J. Rheol. 44, 121 (2000).

    Article  CAS  Google Scholar 

  5. H. Lentzakis, Ch. Das, D. Vlassoloulos, and D. J. Read, J. Rheol. 58, 1855 (2014).

    Article  CAS  Google Scholar 

  6. A. E. Likhtman and R. S. Graham, J. Non-Newtonian Fluid Mech. 114, 1 (2003).

    Article  CAS  Google Scholar 

  7. J. M. Adams, S. M. Fielding, and P. D. Olmsted, J. Rheol. 55, 1007 (2011).

    Article  CAS  Google Scholar 

  8. S. Q. Wang, S. Ravindranath, Y. Wang, and P. Boukany, J. Chem. Phys. 27, 064903 (2007).

    Article  Google Scholar 

  9. M. Andreev, R. N. Khaliullin, R. J. A. Steenbakkers, and J. D. Schreiber, J. Rheol. 57, 535 (2013).

    Article  CAS  Google Scholar 

  10. Ch. Ligoure and S. Mora, Rheol. Acta 52, 91 (2013).

    Article  CAS  Google Scholar 

  11. G. Ianniruberto and G. Marrucci, J. Rheol. 58, 89 (2014).

    Article  CAS  Google Scholar 

  12. D. W. Mead, N. Banerjee, and J. Park, J. Rheol. 59, 35 (2013).

    Google Scholar 

  13. G. V. Vinogradov, A. Ya. Malkin, Yu. G. Yanovskii, E. K. Borisenkova, B. V. Yarlykov, G. V. Berezhnaya, J. Polym. Sci., Part A-2: Polym. Phys. 10, 1061 (1972).

    Article  CAS  Google Scholar 

  14. A. Martin, A. Zinchenko, and R. Davis, J. Rheol. 58, 759 (2014).

    Article  CAS  Google Scholar 

  15. M. Herrchen and H. Ch. Öttinger, Fluid Mech. 68, 17 (1997).

    CAS  Google Scholar 

  16. S. Ya. Frenkel’, V. G. Baranov, N. G. Bel’nikevich, and Yu. N. Panov, Vysokomol. Soedin. 6 (10), 1917 (1964).

    Google Scholar 

  17. A. V. Semakov, V. G. Kulichikhin, A. K. Tereshin, S. V. Antonov, A. Ya. Malkin, J. Polym. Sci., Polym. Phys. Ed. 53 (8), 559 (2015).

    Article  CAS  Google Scholar 

  18. A. V. Semakov, I. Yu. Skvortsov, V. G. Kulichikhin, and A. Ya. Malkin, JETP Lett. 101 (10), 690 (2015).

    Article  CAS  Google Scholar 

  19. A. Ya. Malkin, S. G. Kulichikhin, and A. E. Chalykh, Polymer 22 (10), 1373 (1981).

    Article  CAS  Google Scholar 

  20. S. V. Vshivkov and E. V. Rusinova, Phase Transitions in Polymer Systems Caused by Mechanical Field (Izd-vo Ural’skogo gos un-ta, Yekaterinburg, 2001) [in Russian].

    Google Scholar 

  21. A. Ya. Malkin and V. G. Kulichikhin, Appl. Rheol. 25 (3), 35358 (2015).

    Google Scholar 

  22. A. V. Semakov and V. G. Kulichikhin, Polym. Sci., Ser. A 51 (11–12), 1313 (2009).

    Article  Google Scholar 

  23. A. Ya. Malkin, A. V. Semakov, and V. G. Kulichihkin, Rheol. Acta 50, 485 (2011).

    Article  CAS  Google Scholar 

  24. A. Ya. Malkin, A. V. Semakov, and V. G. Kulichihkin, Polym. Sci., Ser. A 53 (12), 1198 (2011).

    Article  CAS  Google Scholar 

  25. Y. Th. Hu, J. Rheol. 58, 1789 (2014).

    Article  Google Scholar 

  26. S. V. Vasilchenko, Polym. Sci., Ser. A 57 (4) 489 (2015).

    Article  CAS  Google Scholar 

  27. S. Saito, K. Matsuzaka, and T. Hashimoto, Macromolecules 32, 4879 (1999).

    Article  CAS  Google Scholar 

  28. K. Mortensen, E. Theunissen, R. Kleppinger, K. Almdal, H. Reynaers, Macromolecules 35, 7773 (2002).

    Article  CAS  Google Scholar 

  29. R. T. Bonnecaze and M. Cloitre, Adv. Polym. Sci. 236, 117 (2010).

    Article  CAS  Google Scholar 

  30. J. Kaldasch, B. Senge, and J. Laven, J. Thermodyn. 2015, article ID 153854 (2015).

    Google Scholar 

  31. S. A. Faroughi and Ch. Huber, Rheol. Acta 54, 85 (2015).

    Article  CAS  Google Scholar 

  32. A. Ya. Malkin and C. J. S. Petrie, J. Rheol. 41, 1 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ya. Malkin.

Additional information

Original Russian Text © A.Ya. Malkin, A.V. Semakov, V.G. Kulichikhin, 2015, published in Vysokomolekulyarnye Soedineniya. Ser. A, 2015, Vol. 57, No. 6, pp. 562–567.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malkin, A.Y., Semakov, A.V. & Kulichikhin, V.G. High-rate deformation of polymer melts as discrete media: Justification of the model. Polym. Sci. Ser. A 57, 904–909 (2015). https://doi.org/10.1134/S0965545X15060152

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X15060152

Keywords

Navigation