Skip to main content
Log in

Effects of process and ambient parameters on diameter and morphology of electrospun polyacrylonitrile nanofibers

  • Functional Polymers
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

The diameter of the nanofibers produced by electrospinning is a key parameter for their potential applications. In this study, electrospinning was used to produce polyacrylonitrile (PAN) nanofibers at varying parameters of solution concentration, applied voltage, spinning distance, surroundings temperature, and needle diameter. To investigate the effects of these parameters on the fiber morphology and diameter, wide range of them were selected and 24 systematic experiments were carried out. The results revealed that the solution concentration had a significant influence on both morphology and diameter of the nanofibers. With increasing solution concentration from 7 to 19 wt %, the morphology was changed from beaded fibers to uniform fibers and the fiber diameter noticeably increased, ranging from 84 to 757 nm. In addition, solution properties such as viscosity and surface tension at different concentrations were measured for a thorough examination of the solution concentration effect. Also, increasing applied voltage and spinning distance resulted in a minimum in fiber diameter. Moreover, the diameter of nanofibers decreased with an increase and a decrease in surroundings temperature and needle diameter, respectively. Optimum conditions for fabricating nanofibers with minimum diameter and best morphology were determined and PAN nanofibers with diameter of 88 nm were produced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Bhardwaj and S. C. Kundu, Biotechnol. Adv. 28, 325 (2010).

    Article  CAS  Google Scholar 

  2. Z. W. Ma and S. Ramakrishna, J. Membr. Sci. 319, 23 (2008).

    Article  CAS  Google Scholar 

  3. H. Zhang, H. Nie, D. Yu, C. Wu, Y. Zhang, C. J. B. White, L. Zhu, Desalination 256, 141 (2010).

    Article  CAS  Google Scholar 

  4. D. C. J. Aduba, J. A. Hammer, Q. Yuan, W. A. Yeudall, G. L. Bowlin, H. Yang, Acta Biomater. 9, 6576 (2013).

    Article  CAS  Google Scholar 

  5. A. P. SerafiniImmich, M. L. Arias, N. Carreras, R. LuisBoemo, J.A. Tornero, Mater. Sci. Eng., C 33, 4002 (2013).

    Article  Google Scholar 

  6. A. Abdal-hay, L. D. Tijing, and J. K. Lim, Chem. Eng. J. 215–216, 57 (2013).

    Article  Google Scholar 

  7. M. S. Kim, J. G. Son, H. J. Lee, H. Hwang, C. H. Choi, G. H. Kim, Curr. Appl. Phys. 14, 1 (2014).

    Article  Google Scholar 

  8. M. Ranjbar-Mohammadi, S. H. Bahrami, and M. T. Joghataei, Mater. Sci. Eng., C 33, 4935 (2013).

    Article  CAS  Google Scholar 

  9. A. R. Unnithan, N. A. M. Barakat, P. B. T. Pichiah, G. Gnanasekaran, R. Nirmala, Y. S. Cha, C. H. Jung, M. El-Newehy, H. Y. Kim, Carbohydr. Polym. 90, 1786 (2012).

    Article  CAS  Google Scholar 

  10. P. Agarwal, P. K. Mishra, and P. Srivastava, J. Mater. Sci. 47, 4262 (2012).

    Article  CAS  Google Scholar 

  11. I. K. Kwon, S. Kidoaki, and T. Matsuda, Biomaterials 26, 3929 (2005).

    Article  CAS  Google Scholar 

  12. S. Kaur, D. Rana, T. Matsuura, S. Sundarrajan, S. Ramakrishna, J. Membr. Sci. 390–391, 235 (2012).

    Article  Google Scholar 

  13. B. S. Lalia, E. Guillen-Burrieza, H. A. Arafat, and R. Hashaikeh, J. Membr. Sci. 428, 104 (2013).

    Article  CAS  Google Scholar 

  14. M. R Bilad, P. Westbroek, and I. F. J. Vankelecom, J. Membr. Sci. 380, 181 (2011).

    Article  CAS  Google Scholar 

  15. K. P. Matabola and R. M. Moutloali, J. Mater. Sci. 48, 5475 (2013).

    Article  CAS  Google Scholar 

  16. J. P. Chen, K. H. Ho, Y. P. Chiang, and K. W. Wu, J. Membr. Sci. 340, 9 (2009).

    Article  CAS  Google Scholar 

  17. J. Y. Park, I. H. Lee, and G. N. Bea, J. Ind. Eng. Chem. 14, 707 (2008).

    Article  CAS  Google Scholar 

  18. M. Khayet and T. Matsuura, Membrane Distillation Principles and Applications (Elsevier, Amsterdam, 2011).

    Google Scholar 

  19. A. Awal, M. Sain, and M. Chowdhury, Composites, Part B 42, 1220 (2011).

    Article  Google Scholar 

  20. Y. Liu, R. Wang, H. Ma, B. S. Hsiao, B. Chu, Polymer 54, 548 (2013).

    Article  CAS  Google Scholar 

  21. T. Wang and S. Kumar, J. Appl. Polym. Sci. 102, 1023 (2006).

    Article  CAS  Google Scholar 

  22. L. I. N. Yijun, D. E. N. G. Qinghua, and J. I. N. Riguang, J. Wuhan. Univ. Technol. 27, 207 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Mahdi Seyed Shahabadi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahabadi, S.M.S., Kheradmand, A., Montazeri, V. et al. Effects of process and ambient parameters on diameter and morphology of electrospun polyacrylonitrile nanofibers. Polym. Sci. Ser. A 57, 155–167 (2015). https://doi.org/10.1134/S0965545X15020157

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X15020157

Keywords

Navigation