Skip to main content
Log in

Effect of Quinoline Additions on the Activity of In Situ Formed NiWS Catalysts

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The effect of quinoline additions and amount of the sulfiding agent added on the activity of the in situ prepared NiWS catalyst in naphthalene hydrogenation was studied. In the presence of 1 wt % quinoline, the obtained catalyst shows high activity (>95% naphthalene conversion). The physicochemical properties of the catalyst were studied by XPS, X-ray diffraction analysis, and TEM. At the W : substrate molar ratio of 1 : 40 and 360°С, an increase in the amount of the sulfiding agent from 1 to 5 wt % leads to a decrease in the selectivity with respect to decalins from 68 to 39%, respectively. The degree of decoration with nickel on adding 1 wt % sulfiding agent is 0.1. As the amount of the sulfiding agent added is increased to 5 wt %, the degree of decoration with nickel increases to 0.3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

Notes

  1. Naumkin, A.V., Kraut-Vass, A., Gaarenstroom, S.W., and Powell, C.J., NIST X-ray Photoelectron Spectroscopy Database, Version 4.1, Gaithersburg: National Inst. of Standards and Technology, 2012. https://doi.org/10.18434/T4T88K

REFERENCES

  1. Marafi, A., Albazzaz, H., and Rana, M.S., Catal Today, 2019, vol. 329, pp. 125–134. https://doi.org/10.1016/j.cattod.2018.10.067

    Article  CAS  Google Scholar 

  2. Guerrero-Ruiz, A., Sepulveda-Escribano, A., RodriguezRamos, I., Lopez-Agudo, A., and Fierro, J.L.G., Fuel, 1995, vol. 74, pp. 279–283. https://doi.org/10.1016/0016-2361(95)92666-T

    Article  CAS  Google Scholar 

  3. Looi, P.Y., Mohamed, A.R., and Tye, C.T., Chem. Eng. J., 2012, vol. 181, pp. 717–724. https://doi.org/10.1016/j.cej.2011.12.080

    Article  CAS  Google Scholar 

  4. Trakarnpruk, W., Seentrakoon, B., and Porntangjitlikit, S., Silpakorn Univ. Sci. Technol. J., 2008, vol. 2, pp. 7–13. https://doi.org/10.14456/sustj.2008.1

    Article  CAS  Google Scholar 

  5. Trejo, F. and Ancheyta, J., Catal. Today, 2005, vol. 109, nos. 1–4, pp. 99–103. https://doi.org/10.1016/j.cattod.2005.08.005

    Article  CAS  Google Scholar 

  6. Raghuveer, C.S., Thybaut, J.W., De Bruycker, R., Metaxas, K., Bera, T., and Marin, G.B., Fuel, 2014, vol. 125, pp. 206–218. https://doi.org/10.1016/j.fuel.2014.02.017

    Article  CAS  Google Scholar 

  7. Marafi, A., Hauser, A., and Stanislaus, A., Catal. Today, 2007, vol. 125, nos. 3–4, pp. 192–202. https://doi.org/10.1016/j.cattod.2007.03.060

    Article  CAS  Google Scholar 

  8. Sizova, I.A. and Maksimov, A.L., Petol. Chem., 2017, vol. 57, pp. 595–599. https://doi.org/10.1134/S096554411707009X

    Article  CAS  Google Scholar 

  9. Zepeda, T.A., Pawelec, B., Obeso-Estrella, R., de León, J.D., Fuentes, S., Alonso-Núñez, G., and Fierro, J.L.G., Appl. Catal. B, 2016, vol. 180, pp. 569–579. https://doi.org/10.1016/j.apcatb.2015.07.013

    Article  CAS  Google Scholar 

  10. Humbert, S., Izzet, G., and Raybaud, P., J. Catal., 2016, vol. 333, pp. 78–93. https://doi.org/10.1016/j.jcat.2015.10.016

    Article  CAS  Google Scholar 

  11. Rana, M.S., Al-Barood, A., Brouresli, R., Al-Hendi, A.W., and Mustafa, N., Fuel Process. Technol., 2018, vol. 177, pp. 170–178. https://doi.org/10.1016/j.fuproc.2018.04.014

    Article  CAS  Google Scholar 

  12. Venuti Björkman, J.J., Hruby, S.L., Pettersson, L.J., and Kantarelis, E., Catalysts, 2022, vol. 12, no. 7, p. 736. https://doi.org/10.3390/catal12070736

    Article  CAS  Google Scholar 

  13. Nikul’shina, M.S., Mozhaev, A.V., and Nikul’shin, P.A., Russ. J. Appl. Chem., 2019, vol. 92, pp. 105–112. https://doi.org/10.1134/S10704272190100154

    Article  Google Scholar 

  14. Vutolkina, A.V., Makhmutov, D.F., Zanina, A.V., Maksimov, A.L., Kopitsyn, D.S., Glotov, A.P., Egazar’yants, S.V., and Karakhanov, E.A., Petol. Chem., 2018, vol. 58, pp. 1227–1232. https://doi.org/10.1134/S0965544118140141

    Article  CAS  Google Scholar 

  15. Kuchinskaya, T.S., Mamian, L.G., and Kniazeva, M.I., Petrol. Chem., 2021, vol. 61, pp. 1124–1130. https://doi.org/10.1134/S0965544121100054

    Article  CAS  Google Scholar 

  16. Vutolkina, A.V., Baigildin, I.G., Glotov, A.P., Pimerzin, A.A., Akopyan, A.V., Maximov, A.L., and Karakhanov, E.A., Appl. Catal. B, 2022, vol. 312, article 121403. https://doi.org/10.1016/j.apcatb.2022.121403

  17. Sizova, I.A., Serdyukov, S.I., and Maksimov, A.L., Petrol. Chem., 2015, vol. 55, no. 6, pp. 468–478. https://doi.org

    Google Scholar 

  18. Vutolkina, A.V., Makhmutov, D.F., Zanina, A.V., Maksimov, A.L., Glotov, A.P., Sinikova, N.A., and Karakhanov, E.A., Petrol. Chem., 2018, vol. 58, pp. 528–534. https://doi.org/10.1134/s0965544118070095

    Article  CAS  Google Scholar 

  19. Hashemi, R., Nassar, N.N., and Almao, P.P., Appl. Energy, 2014, vol. 133, pp. 374–387. https://doi.org/10.1016/j.apenergy.2014.07.069

    Article  CAS  Google Scholar 

  20. Khadzhiev, S.N., Kadiev, Kh.M., Zekel’, L.A., and Kadieva, M.Kh., Petol. Chem., 2018, vol. 58, pp. 535–541. https://doi.org/10.1134/S0965544118070046

    Article  CAS  Google Scholar 

  21. Ma, Y., Zhang, J., Wu, W., Cai, Z., Cao, Y., Huang, K., and Jiang, L., Chem. Eng. Sci., 2022, vol. 253, article 117516. https://doi.org/10.1016/j.ces.2022.117516

  22. Leglise, J., van Gestel, J., and Duchet, J.C., J. Chem. Soc., Chem. Commun., 1994, no. 5, pp. 611–612. https://doi.org/10.1039/C39940000611

    Article  Google Scholar 

  23. Furimsky, E. and Massoth, F.E., Catal. Rev., 2005, vol. 47, no. 3, pp. 297–489. https://doi.org/10.1081/CR-200057492

    Article  CAS  Google Scholar 

Download references

Funding

The study was performed within the framework of the government assignment for the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Contributions

A.L. Maximov, M.I. Knyazeva, and T.S. Kuchinskaya formulated the research goals and suggested the set of physicochemical analysis methods for studying the catalyst. T.S. Kuchinskaya and A.F. Ziniatullina processed data obtained by transmission electron microscopy, X-ray photoelectron spectroscopy, and X-ray phase analysis. A.F. Ziniatullina performed catalytic experiments, interpreted the results of chromatographic analysis of the product mixtures, and prepared figures for the paper.

Corresponding author

Correspondence to T. S. Kuchinskaya.

Ethics declarations

A.L. Maximov is the Editor-in-Chief of the Neftekhimiya/Petroleum Chemistry journal. The other authors declare no conflict of interest requiring disclosure in this article.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziniatullina, A.F., Kuchinskaya, T.S., Knyazeva, M.I. et al. Effect of Quinoline Additions on the Activity of In Situ Formed NiWS Catalysts. Pet. Chem. 63, 939–948 (2023). https://doi.org/10.1134/S0965544123060245

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544123060245

Keywords:

Navigation