Skip to main content
Log in

Mechanisms of Low-Temperature Processes of Biomass Conversion (A Review)

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Torrefaction and hydrothermal carbonization are low-temperature thermochemical procedures for the biomass conversion to biocoal, a carbon-neutral analog of fossil coal. Biocoals, compared to untreated biomass, exhibit hydrophobic properties, increased energy density, and calorific value similar to that of brown coals. The two processing methods differ essentially in that hydrothermal carbonization is performed in the presence of a large amount of water as reaction medium; hence, the biocoal formation mechanisms will be different for each process. Papers dealing with specific features of low-temperature heat treatment of biomass and with regular trends in conversion of biomass structural components (cellulose, hemicellulose, lignin) in the course of torrefaction and hydrothermal carbonization are considered in the review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Shrestha, B., le Brech, Y., Ghislain, T., Leclerc, S., Carré, V., Aubriet, F., Hoppe, S., Marchal, O., Pontvianne, S., Brosse, N., and Dufour, A., ACS Sustain. Chem. Eng., 2017, vol. 5, no. 8, pp. 6940–6949. https://doi.org/10.1021/acssuschemeng.7b01130

    Article  CAS  Google Scholar 

  2. Chen, D., Gao, A., Cen, K., Zhang, J., Cao, X., and Ma, Z., Energy Convers. Manag., 2018, vol. 169, pp. 228–237. https://doi.org/10.1016/j.enconman.2018.05.063

    Article  CAS  Google Scholar 

  3. Ghodake, G.S., Shinde, S.K., Kadam, A.A., Saratale, R.G., Saratale, G.D., Kumar, M., Palem, R.R., AlShwaiman, H.A., Elgorban, A.M., Syed, A., and Kim, D.-Y., J. Clean. Prod., 2021, vol. 297, article 126645. https://doi.org/10.1016/j.jclepro.2021.126645

  4. Kulikova, M.V., Krylova, A.Y., Zhagfarov, F.G., and Krysanova, K.O., Chem. Technol. Fuels Oils, 2022, vol. 58, no. 2, pp. 327–332. https://doi.org/10.1007/s10553-022-01388-2

    Article  CAS  Google Scholar 

  5. Kulikova, M.V., Krylova, A.Y., Zhagfarov, F.G., Krysanova, K.O., and Lapidus, A.L., Chem. Technol. Fuels Oils, 2022, vol. 58, no. 2, pp. 320–326. https://doi.org/10.1007/s10553-022-01387-3

    Article  CAS  Google Scholar 

  6. Kundu, K., Chatterjee, A., Bhattacharyya, T., Roy, M., and Kaur, A., Prospects of Alternative-Transportation Fuels, Springer, 2018, pp. 235–268. https://doi.org/10.1007/978-981-10-7518-6_11

  7. Crombie, K. and Mašek, O., Bioresource Technol., 2014, vol. 162, pp. 148–156. https://doi.org/10.1016/j.biortech.2014.03.134

    Article  CAS  Google Scholar 

  8. Kloss, S., Zehetner, F., Dellantonio, A., Hamid, R., Ottner, F., Liedtke, V., Schwanninger, M., Gerzabek, M.H., and Soja, G., J. Environ. Qual., 2012, vol. 41, no. 4, pp. 990–1000. https://doi.org/10.2134/jeq2011.0070

    Article  CAS  PubMed  Google Scholar 

  9. Moralı, U. and Şensöz, S., Fuel, 2015, vol. 150, pp. 672–678. https://doi.org/10.1016/j.fuel.2015.02.095

    Article  CAS  Google Scholar 

  10. Van de Velden, M., Baeyens, J., Brems, A., Janssens, B., and Dewil, R., Renew. Energy, 2010, vol. 35, no. 1, pp. 232–242. https://doi.org/10.1016/j.renene.2009.04.019

    Article  CAS  Google Scholar 

  11. Patwardhan, P.R., Dalluge, D.L., Shanks, B.H., and Brown, R.C., Bioresource Technol., 2011, vol. 102, no. 8, pp. 5265–5269. https://doi.org/10.1016/j.biortech.2011.02.018

    Article  CAS  Google Scholar 

  12. Eom, I.-Y., Kim, J.-Y., Kim, T.-S., Lee, S.-M., Choi, D., Choi, I.-G., and Choi, J.-W., Bioresource Technol., 2012, vol. 104, pp. 687–694. https://doi.org/10.1016/j.biortech.2011.10.035

    Article  CAS  Google Scholar 

  13. Wang, Z., McDonald, A.G., Westerhof, R.J.M., Kersten, S.R.A., Cuba-Torres, C.M., Ha, S., Pecha, B., and Garcia-Perez, M., J. Anal. Appl. Pyrol., 2013, vol. 100, pp. 56–66. https://doi.org/10.1016/j.jaap.2012.11.017

    Article  CAS  Google Scholar 

  14. Fang, Z., Gao, Y., Bolan, N., Shaheen, S.M., Xu, S., Wu, X., Xu, X., Hu, H., Lin, J., Zhang, F., Li, J., Rinklebe, J., and Wang, H., Chem. Eng. J., 2020, vol. 390, article 124611. https://doi.org/10.1016/j.cej.2020.124611

  15. Wang, S., Dai, G., Yang, H., and Luo, Z., Prog. Energy Combust. Sci., 2017, vol. 62, pp. 33–86. https://doi.org/10.1016/j.pecs.2017.05.004

    Article  Google Scholar 

  16. Yu, J., Paterson, N., Blamey, J., and Millan, M., Fuel, 2017, vol. 191, pp. 140–149. https://doi.org/10.1016/j.fuel.2016.11.057

    Article  CAS  Google Scholar 

  17. Dhyani, V. and Bhaskar, T., Renew. Energy, 2018, vol. 129, pp. 695–716. https://doi.org/10.1016/j.renene.2017.04.035

    Article  CAS  Google Scholar 

  18. Yogalakshmi, K.N., Poornima, D.T., Sivashanmugam, P., Kavitha, S., Yukesh Kannah, R., Sunita Varjani, S., AdishKumar, S., Kumar, G., and Banu, R.J., Chemosphere, 2022, vol. 286, no. 2, article 131824. https://doi.org/10.1016/j.chemosphere.2021.131824

  19. Leng, E., Guo, Y., Chen, J., Liu, S.E.J., and Xue, Y., Fuel, 2022, vol. 309, article 122102. https://doi.org/10.1016/j.fuel.2021.122102

  20. Chen, D., Cen, K., Zhuang, X., Gan, Z., Zhou, J., Zhang, Y., and Zhang, H., Combust. Flame, 2022, vol. 242, article 112142. https://doi.org/10.1016/j.combustflame.2022.112142

  21. Lu, Q., Yang, X., Dong, C., Zhang, Z., Zhang, X., and Zhu, X., J. Anal. Appl. Pyrol., 2011, vol. 92, no. 2, pp. 430–438. https://doi.org/10.1016/j.combustflame.2018.09.025

    Article  CAS  Google Scholar 

  22. Chen, D., Cen, K., Cao, X., Zhang, J., Chen, F., and Zhou, J., Bioresource Technol., 2020, vol. 305, article 123130. https://doi.org/10.1016/j.biortech.2020.123130

  23. Lu, Q., Hu, B., Zhang, Z., Wu, Y., Cui, M., Liu, D., Dong, C., and Yang, Y., Combust. Flame, 2018, vol. 198, pp. 267–277. https://doi.org/10.1016/j.combustflame.2018.09.025

    Article  CAS  Google Scholar 

  24. Lédé, J., J. Anal. Appl. Pyrol., 2012, vol. 94, pp. 17–32. https://doi.org/10.1016/j.jaap.2011.12.019

    Article  CAS  Google Scholar 

  25. Gargiulo, V., Ferreiro, A.I., Giudicianni, P., Tomaselli, S., Costa, M., Ragucci, R., and Alfe, M., J. Anal. Appl. Pyrol., 2022, vol. 161, article 105369. https://doi.org/10.1016/j.jaap.2021.105369

  26. Usino, D.O., Supriyanto, Ylitervo, P., Pettersson, A., and Richards, T., J. Anal. Appl. Pyrol., 2020, vol. 147, article 104782. https://doi.org/10.1016/j.jaap.2020.104782

  27. Li, J., Bai, X., Fang, Y., Chen, Y., Wang, X., Chen, H., and Yang, H., Combust. Flame, 2020, vol. 215, pp. 1–9. https://doi.org/10.1016/j.combustflame.2020.01.016

    Article  CAS  Google Scholar 

  28. Kan, T., Strezov, V., Evans, T., He, J., Kumar, R., and Lu, Q., Renew. Sustain. Energy Rev., 2020, vol. 134, article 110305. https://doi.org/10.1016/j.rser.2020.110305

  29. Xin, X., Pang, S., de Miguel Mercader, F., and Torr, K.M., J. Anal. Appl. Pyrol., 2019, vol. 138, pp. 145–153. https://doi.org/10.1016/j.jaap.2018.12.018

    Article  CAS  Google Scholar 

  30. Choi, H.S., Choi, Y.S., and Park, H.C., Renew. Energy, 2012, vol. 42, pp. 131–135. https://doi.org/10.1016/j.renene.2011.08.049

    Article  CAS  Google Scholar 

  31. Damartzis, T., Vamvuka, D., Sfakiotakis, S., and Zabaniotou, A., Bioresource Technol., 2011, vol. 102, no. 10, pp. 6230–6238. https://doi.org/10.1016/j.biortech.2011.02.060

    Article  CAS  Google Scholar 

  32. Uddin, M.N., Daud, W.M.A.W., and Abbas, H.F., RSC Adv., 2014, vol. 4, no. 21, p. 10467. https://doi.org/10.1039/c3ra43972k

    Article  CAS  Google Scholar 

  33. Ribeiro, J., Godina, R., Matias, J., and Nunes, L., Sustainability, 2018, vol. 10, no. 7, article 2323. https://doi.org/10.3390/su10072323

  34. Cao, Y., He, M., Dutta, S., Luo, G., Zhang, S., and Tsang, D.C.W., Renew. Sustain. Energy Rev., 2021, vol. 152, article 111722. https://doi.org/10.1016/j.rser.2021.111722

  35. Agar, D. and Wihersaari, M., Biomass Bioenergy, 2012, vol. 44, pp. 107–111. https://doi.org/10.1016/j.biombioe.2012.05.004

    Article  CAS  Google Scholar 

  36. Bridgeman, T.G., Jones, J.M., Williams, A., and Waldron, D.J., Fuel, 2010, vol. 89, no. 12, pp. 3911–3918. https://doi.org/10.1016/j.fuel.2010.06.043

    Article  CAS  Google Scholar 

  37. Shankar Tumuluru, J., Sokhansanj, S., Hess, J.R., Wright, C.T., and Boardman, R.D., Ind. Biotechnol., 2011, vol. 7, no. 5, pp. 384–401. https://doi.org/10.1089/ind.2011.7.384

    Article  CAS  Google Scholar 

  38. Pelaez-Samaniego, M.R., Yadama, V., GarciaPerez, M., Lowell, E., and McDonald, A.G., J. Anal. Appl. Pyrol., 2014, vol. 109, pp. 222–233. https://doi.org/10.1016/j.jaap.2014.06.008

    Article  CAS  Google Scholar 

  39. Chen, W.H., Cheng, W.Y., Lu, K.M., and Huang, Y.P., Appl. Energy, 2011, vol. 88, no. 11, pp. 3636–3644. https://doi.org/10.1016/j.apenergy.2011.03.040

    Article  CAS  Google Scholar 

  40. Saadon, S., Uemura, Y., and Mansor, N., Procedia Chem., 2014, vol. 9, pp. 194–201. https://doi.org/10.1016/j.proche.2014.05.023

    Article  CAS  Google Scholar 

  41. Chen, W.-H., Lin, B.-J., Lin, Y.-Y., Chu, Y.-S., Ubando, A.T., Show, P.L., Ong, H.C., Chang, J.-S., Ho, S.-H., Culaba, A.B., Pétrissans, A., and Pétrissans, M., Prog. Energy Combust. Sci., 2021, vol. 82, article 100887. https://doi.org/10.1016/j.pecs.2020.100887

  42. Krysanova, K., Krylova, A., and Zaichenko, V., Fuel, 2019, vol. 256, article 115929. https://doi.org/10.1016/j.fuel.2019.115929

  43. van der Stelt, M.J.C., Gerhauser, H., Kiel, J.H.A., and Ptasinski, K.J., Biomass Bioenergy, 2011, vol. 35, no. 9, pp. 3748–3762. https://doi.org/10.1016/j.biombioe.2011.06.023

    Article  CAS  Google Scholar 

  44. Pahla, G., Ntuli, F., and Muzenda, E., Waste Manag., 2018, vol. 71, pp. 512–520. https://doi.org/10.1016/j.wasman.2017.10.035

    Article  CAS  PubMed  Google Scholar 

  45. Krysanova, K., Krylova, A., Kulikova, M., Kulikov, A., and Rusakova, O., Fuel, 2022, vol. 328, article 125220. https://doi.org/10.1016/j.fuel.2022.125220

  46. Niu, Y., Lv, Y., Lei, Y., Liu, S., Liang, Y., Wang, D., and Hui, S., Renew. Sustain. Energy Rev., 2019, vol. 115, article 109395. https://doi.org/10.1016/j.rser.2019.109395

  47. Sarvaramini, A. and Larachi, F., Fuel, 2014, vol. 116, pp. 158–167. https://doi.org/10.1016/j.fuel.2013.07.119

    Article  CAS  Google Scholar 

  48. Ciolkosz, D. and Wallace, R., Biofuels, Bioprod. Biorefining, 2011, vol. 5, no. 3, pp. 317–329. https://doi.org/10.1002/bbb.275

    Article  CAS  Google Scholar 

  49. Wang, J., Minami, E., and Kawamoto, H., J. Wood Sci., 2020, vol. 66, no. 1, p. 41. https://doi.org/10.1186/s10086-020-01888-x

    Article  CAS  Google Scholar 

  50. Mašek, O., Budarin, V., Gronnow, M., Crombie, K., Brownsort, P., Fitzpatrick, E., and Hurst, P., J. Anal. Appl. Pyrol., 2013, vol. 100, pp. 41–48. https://doi.org/10.1016/j.jaap.2012.11.015

    Article  CAS  Google Scholar 

  51. Lunguleasa, A., Spirchez, C, and Olarescu, A.M., Forests, 2022, vol. 13, p. 361. https://doi.org/10.3390/f13020361

    Article  Google Scholar 

  52. Nizamuddin, S., Baloch, H.A., Griffin, G.J., Mubarak, N.M., Bhutto, A.W., Abro, R., Mazari, S.A., and Ali, B.S., Renew. Sustain. Energy Rev., 2017, vol. 73, pp. 1289–1299. https://doi.org/10.1016/j.rser.2016.12.122

    Article  CAS  Google Scholar 

  53. Medic, D., Darr, M., Shah, A., Potter, B., and Zimmerman, J., Renew. Sustain. Energy Rev., 2017, vol. 73, pp. 1289–1299. https://doi.org/10.1016/j.fuel.2011.07.019

    Article  CAS  Google Scholar 

  54. Phanphanich, M. and Mani, S., Fuel, 2012, vol. 91, no. 1, pp. 147–154. https://doi.org/10.1016/j.biortech.2010.08.028

    Article  CAS  Google Scholar 

  55. Chen, Q., Zhou, J., Liu, B., Mei, Q., and Luo, Z., Bioresource Technol., 2011, vol. 102, no. 2, pp. 1246–1253. https://doi.org/10.1007/s11434-010-4292-z

    Article  CAS  Google Scholar 

  56. Wang, Y., Qiu, L., Zhu, M., Sun, G., Zhang, T., and Kang, K., Sci. Rep., 2019, vol. 9, article 5535. https://doi.org/10.1038/s41598-019-38849-4

  57. Duman, G., Balmuk, G., Cay, H., Kantarli, I.C., and Yanik, J., Energy Fuels, 2020, vol. 34, no. 9, pp. 11175–1185. https://doi.org/10.1021/acs.energyfuels.0c02255

    Article  CAS  Google Scholar 

  58. Poudel, J., Karki, S., and Oh, S., Energies, 2018, vol. 11, no. 7, article 1641. https://doi.org/10.3390/en11071641

  59. Bridgeman, T.G., Jones, J.M., Shield, I., and Williams, P.T., Fuel, 2008, vol. 87, no. 6, pp. 844–856. https://doi.org/10.1016/j.fuel.2007.05.041

    Article  CAS  Google Scholar 

  60. Rousset, P., Aguiar, C., Labbé, N., and Commandré, J-M., Bioresource Technol., 2011, vol. 102, no. 17, pp. 8225–8231. https://doi.org/10.1016/j.biortech.2011.05.093

    Article  CAS  Google Scholar 

  61. Funke, A. and Ziegler, F., Biofuels, Bioprod. Biorefining, 2010, vol. 4, no. 2, pp. 160–177. https://doi.org/10.1002/bbb.198

    Article  CAS  Google Scholar 

  62. Reza, M.T., Lynam, J.G., Uddin, M.H., and Coronella, C.J., Biomass Bioenergy, 2013, vol. 49, pp. 86–94. https://doi.org/10.1016/j.biombioe.2012.12.004

    Article  CAS  Google Scholar 

  63. Zhang, Y., Jiang, Q., Xie, W., Wang, Y., and Kang, J., Biomass Bioenergy, 2019, vol. 122, pp. 175–182. https://doi.org/10.1016/j.biombioe.2019.01.035

    Article  CAS  Google Scholar 

  64. Heidari, M., Salaudeen, S., Arku, P., Acharya, B., Tasnim, S., and Dutta, A., Energy, 2021, vol. 214, article 119020. https://doi.org/10.1016/j.energy.2020.119020

  65. Patel, N., Acharya, B., and Basu, P., Energies, 2021, vol. 14, no. 7, article 1805. https://doi.org/10.3390/en14071805

  66. Basak, S. and Annapure, U.S., Food Res. Int., 2022, vol. 161, article 111849. https://doi.org/10.1016/j.foodres.2022.111849

  67. Yang, S., Zhang, X., Chen, L., Sun, L., Zhao, B., Si, H., Xie, X., and Meng, F., J. Anal. Appl. Pyrol., 2019, vol. 137, pp. 29–36. https://doi.org/10.1016/j.jaap.2018.10.021

    Article  CAS  Google Scholar 

  68. Gao, P., Zhou, Y., Meng, F., Zhang, Y., Liu, Z., Zhang, W., and Xue, G., Energy, 2016, vol. 97, pp. 238–245. https://doi.org/10.1016/j.energy.2015.12.123

    Article  CAS  Google Scholar 

  69. Wang, T., Zhai, Y., Zhu, Y., Peng, C., Xu, B., Wang, T., Li, C., and Zeng, G., Energy Fuels, 2017, vol. 31, no. 11, pp. 12200–12208. https://doi.org/10.1021/acs.energyfuels.7b01881

    Article  CAS  Google Scholar 

  70. Zhang, S., Sheng, K., Yan, W., Liu, J., Shuang, E., Yang, M., and Zhang, X., Chemosphere, 2021, vol. 263, article 128093. https://doi.org/10.1016/j.chemosphere.2020.128093

  71. Volpe, M., Messineo, A., Mäkelä, M., Barr, M.R., Volpe, R., Corrado, C., and Fiori, L., Fuel Process. Technol., 2020, vol. 206, article 106456. https://doi.org/10.1016/j.fuproc.2020.106456

  72. Güleç, F., Riesco, L.M.G., Williams, O., Kostas, E.T., Samson, A., and Lester, E., Fuel, 2021, vol. 302, article 121166. https://doi.org/10.1016/j.fuel.2021.121166

  73. He, Q., Cheng, C., Raheem, A., Ding, L., Shiung Lam, S., and Yu, G., Fuel, 2022, vol. 330, artricle 125586. https://doi.org/10.1016/j.fuel.2022.125586

  74. Monedero, E., Lapuerta, M., Pazo, A., Díaz-Robles, L.A., Pino-Cortés, E., Campos, V., Vallejo, F., Cubillos, F., and Gómez, J., Biomass Bioenergy, 2019, vol. 130, article 105387. https://doi.org/10.1016/j.biombioe.2019.105387

  75. Hansen, L.J., Fendt, S., and Spliethoff, H., Waste Biomass Valorizat., 2022, vol. 13, no. 4, pp. 2321–2333. https://doi.org/10.1007/s12649-021-01613-9

    Article  CAS  Google Scholar 

  76. Zaichenko, V.M., Krysanova, K.O., Pudova, Y.D., and Krylova, A.Y., Solid Fuel Chem., 2022, vol. 56, no. 4, pp. 259–264. https://doi.org/10.3103/S0361521922040103

    Article  CAS  Google Scholar 

  77. Zhu, G., Yang, L., Gao, Y., Xu, J., Chen, H., Zhu, Y., Wang, Y., Liao, C., Lu, C., and Zhu, C., Fuel, 2019, vol. 244, pp. 479–491. https://doi.org/10.1016/j.fuel.2019.02.039

    Article  CAS  Google Scholar 

  78. Shen, D.K., Gu, S., Luo, K.H., Wang, S.R., and Fang, M.X., Bioresource Technol., 2010, vol. 101, no. 15, pp. 6136–6146. https://doi.org/10.1016/j.biortech.2010.02.078

    Article  CAS  Google Scholar 

  79. Monteil-Rivera, F., Phuong, M., Ye, M., Halasz, A., and Hawari, J., Ind. Crops Prod., 2013, vol. 41, pp. 356–364. https://doi.org/10.1016/j.indcrop.2012.04.049

    Article  CAS  Google Scholar 

  80. Candelier, K., Chaouch, M., Dumarçay, S., Pétrissans, A., Pétrissans, M., and Gérardin, P., J. Anal. Appl. Pyrol., 2011, vol. 92, no. 2, pp. 376–383. https://doi.org/10.1016/j.jaap.2011.07.010

    Article  CAS  Google Scholar 

  81. Cao, H.-W., J. Inequalities Appl., 2012, vol. 2012, no. 1, article 41. https://doi.org/10.1186/1029-242X-2012-41

  82. Xie, C., Chen, Y., Li, Y., Wang, X., and Song, C., Appl. Catal. A: General, 2011, vol. 394, nos. 1–2, pp. 32–40. https://doi.org/10.1016/j.apcata.2010.12.019

    Article  CAS  Google Scholar 

  83. Mu, W., Ben, H., Ragauskas, A., and Deng, Y., BioEnergy Res., 2013, vol. 6, no. 4, pp. 1183–1204. https://doi.org/10.1007/s12155-013-9314-7

    Article  CAS  Google Scholar 

  84. Melkior, T., Jacob, S., Gerbaud, G., Hediger, S., Le Pape, L., Bonnefois, L., and Bardet, M., Fuel, 2012, vol. 92, no. 1, pp. 271–280. https://doi.org/10.1016/j.fuel.2011.06.042

    Article  CAS  Google Scholar 

  85. Wang, S., Wang, K., Liu, Q., Gu, Y., Luo, Z., Cen, K., and Fransson, T., Biotechnol. Adv., 2009, vol. 27, no. 5, pp. 562–567. https://doi.org/10.1016/j.biotechadv.2009.04.010

    Article  CAS  PubMed  Google Scholar 

  86. Huang, X., Cao, J.-P., Zhao, X.-Y., Wang, J.-X., Fan, X., Zhao, Y.-P., and Wei, X.-Y., Fuel, 2016, vol. 169, pp. 93–98. https://doi.org/10.1016/j.fuel.2015.12.011

    Article  CAS  Google Scholar 

  87. Li, C., Zhang, J., Yuan, H., Wang, S., and Chen, Y., J. Fuel Chem. Technol., 2021, vol. 49, no. 12, pp. 1733–1752. https://doi.org/10.1016/S1872-5813(21)60134-2

    Article  CAS  Google Scholar 

  88. Wang, C., Xia, S., Yang, X., Zheng, A., Zhao, Z., and Li, H., Fuel, 2021, vol. 291, article 120156. https://doi.org/10.1016/j.fuel.2021.120156

  89. Zhong, D., Zeng, K., Li, J., Qiu, Y., Flamant, G., Nzihou, A., Vasilevich, S.V., Yang, H., and Chen, H., Renew. Sustain. Energy Rev., 2022, vol. 157, article 111989. https://doi.org/10.1016/j.rser.2021.111989

  90. Zahra, H., Sawada, D., Kumagai, S., Ogawa, Y., Johansson, L.S., Ge, Y., Guizani, C., Yoshioka, T., and Hummel, M., Carbon, 2021, vol. 185, pp. 27–38. https://doi.org/10.1016/j.carbon.2021.08.062

    Article  CAS  Google Scholar 

  91. Demitri, C., Madaghiele, M., Grazia Raucci, M., Sannino, A., and Ambrosio, L., IntechOpen, 2019. https://doi.org/10.5772/intechopen.80986

  92. Cheng, X., Tang, Y., Wang, B., and Jiang, J., Waste Biomass Valorizat., 2018, vol. 9, no. 1, pp. 123–130. https://doi.org/10.1007/s12649-016-9736-5

    Article  CAS  Google Scholar 

  93. Itabaiana Junior, I., Avelar do Nascimento, M., de Souza, R.O.M.A., Dufour, A., and Wojcieszak, R., Green Chem., 2020, vol. 22, no. 18, pp. 5859–5880. https://doi.org/10.1039/D0GC01490G

    Article  CAS  Google Scholar 

  94. Rover, M.R., Aui, A., Wright, M.M., Smith, R.G., and Brown, R.C., Green Chem., 2019, vol. 21, no. 21, pp. 5980–5989. https://doi.org/10.1039/C9GC02461A

    Article  CAS  Google Scholar 

  95. Yu, Y., Liu, D., and Wu, H., Energy Fuels, 2012, vol. 26, no. 12, pp. 7331–7339. https://doi.org/10.1021/ef3013097

    Article  CAS  Google Scholar 

  96. Wang, S., Guo, X., Liang, T., Zhou, Y., and Luo, Z., Bioresource Technol., 2012, vol. 104, pp. 722–728. https://doi.org/10.1016/j.biortech.2011.10.078

    Article  CAS  Google Scholar 

  97. Maduskar, S., Maliekkal, V., Neurock, M., and Dauenhauer, P.J., ACS Sustain. Chem. Eng., 2018, vol. 6, no. 5, pp. 7017–7025. https://doi.org/10.1021/acssuschemeng.8b00853

    Article  CAS  Google Scholar 

  98. Lu, Q., Zhang, Y., Dong, C., Yang, Y., and Yu, H., J. Anal. Appl. Pyrol., 2014, vol. 110, pp. 34–43 https://doi.org/10.1016/j.jaap.2014.08.002

    Article  CAS  Google Scholar 

  99. Zhang, C., Chao, L., Zhang, Z., Zhang, L., Li, Q., Fan, H., Zhang, S., Liu, Q., Qiao, Y., Tian, Y., Wang, Y., and Hu, X., Renew. Sustain. Energy Rev., 2021, vol. 135, article 110416. https://doi.org/10.1016/j.rser.2020.110416

  100. Shen, D.K. and Gu, S., Bioresource Technol., 2009, vol. 100, no. 24, pp. 6496–6504. https://doi.org/10.1016/j.biortech.2009.06.095

    Article  CAS  Google Scholar 

  101. Collard, F.X. and Blin, J., Renew. Sustain. Energy Rev., 2014, vol. 38, pp. 594–608. https://doi.org/10.1016/j.rser.2014.06.013

    Article  CAS  Google Scholar 

  102. Lv, G. and Wu, S., J. Anal. Appl. Pyrol., 2012, vol. 97, pp. 11–18. https://doi.org/10.1016/j.jaap.2012.04.010

    Article  CAS  Google Scholar 

  103. Peng, Y. and Wu, S., J. Anal. Appl. Pyrol., 2010, vol. 88, no. 2, pp. 134–139. https://doi.org/10.1016/j.jaap.2010.03.006

    Article  CAS  Google Scholar 

  104. Widyawati, M., Church, T.L., Florin, N.H., and Harris, A.T., Int. J. Hydrogen Energy, 2011, vol. 36, no. 8, pp. 4800–4813. https://doi.org/10.1016/j.ijhydene.2010.11.103

    Article  CAS  Google Scholar 

  105. Shen, D.K., Gu, S., and Bridgwater, A.V., J. Anal. Appl. Pyrol., 2010, vol. 87, no. 2, pp. 199–206. https://doi.org/10.1016/j.jaap.2009.12.001

    Article  CAS  Google Scholar 

  106. Wang, Z., Cao, J., and Wang, J., J. Anal. Appl. Pyrol., 2009, vol. 84, no. 2, pp. 179–184. https://doi.org/10.1016/j.jaap.2009.02.001

    Article  CAS  Google Scholar 

  107. Branca, C., Di Blasi, C., Mango, C., and Hrablay, I., Ind. Eng. Chem. Res., 2013, vol. 52, no. 14, pp. 5030–5039. https://doi.org/10.1021/ie400155x

    Article  CAS  Google Scholar 

  108. Wu, Y., Zhao, Z., Li, H., and He, F., J. Fuel Chem. Technol., 2009, vol. 37, no. 4, pp. 427–432. https://doi.org/10.1016/S1872-5813(10)60002-3

    Article  CAS  Google Scholar 

  109. García-Bordejé, E., Pires, E., and Fraile, J.M., Carbon, 2017, vol. 123, pp. 421–432. https://doi.org/10.1016/j.carbon.2017.07.085

    Article  CAS  Google Scholar 

  110. Sevilla, M. and Fuertes, A.B., Carbon, 2009, vol. 47, no. 9, pp. 2281–2289. https://doi.org/10.1016/j.carbon.2009.04.026

    Article  CAS  Google Scholar 

  111. Wang, T., Zhai, Y., Zhu, Y., Li, C., and Zeng, G., Renew. Sustain. Energy Rev., 2018, vol. 90, pp. 223–247. https://doi.org/10.1016/j.rser.2018.03.071

    Article  CAS  Google Scholar 

  112. Jia, J., Wang, R., Chen, H., Liu, H., Xue, Q., Yin, Q., and Zhao, Z., Energy Sci. Eng., 2022, vol. 10, no. 7, pp. 2076–2087. https://doi.org/10.1002/ese3.1117

    Article  CAS  Google Scholar 

  113. Kang, S., Li, X., Fan, J., and Chang, J., Ind. Eng. Chem. Res., 2012, Vol. 51, no. 26, pp. 9023–9031. https://doi.org/10.1021/ie300565d

    Article  CAS  Google Scholar 

  114. Wang, Y., Hu, Y.-J., Hao, X., Peng, P., Shi, K.-Y., Peng, F., and Sun, R.-C., Adv. Compos. Hybrid Mater., 2020, vol. 3, pp. 267–284. https://doi.org/10.1007/s42114-020-00158-0

    Article  CAS  Google Scholar 

  115. Nakason, K., Panyapinyopol, B., Kanokkantapong, V., Viriya-empikul, N., Kraithong, W., and Pavasant, P., Biomass Convers. Biorefinery, 2018, vol. 8, no. 1, pp. 199–210. https://doi.org/10.1007/s13399-017-0279-1

    Article  CAS  Google Scholar 

  116. Hu, L., Zhao, G., Hao, W., Tang, X., Sun, Y., Lin, L., and Liu, S., RSC Adv., 2012, vol. 2, no. 30, pp. 11184–11206. https://doi.org/10.1039/c2ra21811a

    Article  CAS  Google Scholar 

  117. Aida, T.M., Ikarashi, A., Saito, Y., Watanabe, M., Smith, R.L., and Arai, K., J. Supercrit. Fluids, 2009, vol. 50, no. 3, pp. 257–264. https://doi.org/10.1039/c2ra21811a

    Article  CAS  Google Scholar 

  118. Lu, J., Liu, Z., Zhang, Y., and Savage, P.E., ACS Sustain. Chem. Eng., 2018, vol. 6, no. 11, pp. 14501–14509. https://doi.org/10.1021/acssuschemeng.8b03156

    Article  CAS  Google Scholar 

  119. Latham, K.G., Matsakas, L., Figueira, J., Rova, U., Christakopoulos, P., and Jansson, S., J. Anal. Appl. Pyrol., 2021, vol. 155, article 105095. https://doi.org/10.1016/j.jaap.2021.105095

Download references

ACKNOWLEDGMENTS

The study was performed using the equipment of the Center for Shared Use Analytical Center for Problems of Deep Oil Refining and Petroleum Chemistry, Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences.

Funding

The study was financially supported by the Russian Science Foundation (project no. 17-73-30046P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Kulikova.

Ethics declarations

A.L. Maksimov is the Editor-in-Chief, and M.V. Kulikova, the Managing Editor of the Neftekhimiya/Petroleum Chemistry journal. The other authors declare no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulikova, M.V., Krylova, A.Y., Krysanova, K.O. et al. Mechanisms of Low-Temperature Processes of Biomass Conversion (A Review). Pet. Chem. 63, 633–647 (2023). https://doi.org/10.1134/S0965544123040011

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544123040011

Keywords:

Navigation