Skip to main content
Log in

Research on Nano Inhibition and Plugging Potassium Amine Polysulfonate Drilling Fluid System to Prevent Wellbore Instability in Deep Complex Formations

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The wellbore instability caused by complex strata is a common problem in drilling engineering, which not only causes economic losses, but also reduces the field drilling efficiency. This paper has taken Block A of Junggar Basin as an example to explore the causes of wellbore instability in complex strata and establish corresponding solutions. Studying the core samples in this area and analyzing the logging data, it is concluded that the micro-fractures developed in the rock layer of the block provide natural channels for the entry of filtrate. At the same time, the water-sensitive clay minerals in the formation have hydration after encountering the filtrate. By optimizing the composition, the corresponding nano-strong inhibition and strong plugging potassium amine polysulfonate drilling fluid system (NPAP-2) was established. The overall use of asphalt anti-sloughing agent, nano-and micro-scale cracks (gaps) for physical plugging, wetting inversion control surface water absorption, chemical inhibition of internal hydration. The performance test shows that the HTHP water loss of the drilling fluid system is less than 10 mL, the recovery rate of rock sample is more than 86%, the viscosity is reasonable, the expansion rate is more than 89%, and the filtration loss is reduced from 8.0 to 5.0 mL. The results show that the NPAP-2 can reduce the liquid activity to enhance the inhibition, effectively improve the settlement stability of drilling fluid, reduce the filtration and ensure the wellbore stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

REFERENCES

  1. Zheng, L., Chen, B., Zhang, Z., Tang, J., and Sun, H., Natural Gas Industry B, 2016, vol. 3, pp. 152–157. https://doi.org/10.1016/j.ngib.2016.03.011

  2. Yang, L., Xie, C., Ao, T., Cui, K., Jiang, G., Bai, B., Zhang, Y., Yang, J., Wang, X., and Tian, W., J. Petrol. Sci. Eng., 2022, vol. 212, p. 110249. https://doi.org/10.1016/j.petrol.2022.110249

  3. Kai, C.-M., Zhang, F.-J., Cheng, C.-L., and Chen, Q.-B., Pigment & Resin Technology, 2022, vol. 51, pp. 101–109. https://doi.org/10.1108/PRT-10-2020-0111

    Article  CAS  Google Scholar 

  4. Sun, W.J., Tian, G.Q., Huang, H.J., Lu, G.M., Ke, C.Y., and Hui, J.F., Environ. Earth Sci., 2018, vol. 77, p. 793. https://doi.org/10.1007/s12665-018-7982-5

    Article  CAS  Google Scholar 

  5. You, F-c., Zhou, S-s., Ke, D., and Huang, Y., Arab. J. Sci. Eng., 2022. https://doi.org/10.1007/s13369-022-06730-8

  6. Jiang, G., Ning, F., Zhang, L., and Tu, Y., J. Earth Sci., 2011, vol. 22, p. 652. https://doi.org/10.1007/s12583-011-0216-3

    Article  CAS  Google Scholar 

  7. Zhang, G., He, S., Tang, M., and Kong, L., J. Pet. Explor. Prod. Technol., 2022, vol. 1, p. 16. https://doi.org/10.1007/s13202-022-01483-4

    Article  Google Scholar 

  8. Xiong, Z., Tao, S., Li, X., Shan, W., and Dong, H., Proc. Eng., 2014, vol. 73, pp. 55–62. https://doi.org/10.1016/j.proeng.2014.06.170

    Article  Google Scholar 

  9. Xionghu, Z., Egwu, S.B., Jingen, D., Liujie, M., and Xiangru, J., SPE Drill & Compl., 2022, vol. 37, no. 1, pp. 67–76. https://doi.org/10.2118/208589-PA

    Article  Google Scholar 

  10. Wang, B., JinSheng, S., Shen, F., Li, W., and WenZhe, Z., Natural Gas Industry B, 2020, vol. 7, pp. 680–688. https://doi.org/10.1016/j.ngib.2020.04.008

  11. Qu, Y.Z., Tian, K.P., Deng, M.Y., Wang, R., and Xie, G., Chem. Technol. Fuels Oils, 2020, vol. 56, pp. 363–372. https://doi.org/10.1007/s10553-020-01147-1

    Article  CAS  Google Scholar 

  12. Qu, Y.Z., Tian, K.P., Deng, M.Y., Wang, R., and Xie, G., Chem. Technol. Fuels Oils, 2020, vol. 56, pp. 420–428. https://doi.org/10.1007/s10553-020-01153-3

  13. Wang, S., Shu, Z., Chen, L., ChaoPeng, Y., Li, B., Yuan, C., and Jian, L., Appl. Nanosci., 2019, vol. 9, pp. 1579–1591. https://doi.org/10.1007/s13204-019-01033-1

  14. Duarte, A.C.R., Ribeiro, P.R., Kim, N.R., Mendes, J.R.P., Policarpo, N.A., and Vianna, A.M., J. Petrol. Sci. Eng., 2021, vol. 207, p. 109194. https://doi.org/10.1016/j.petrol.2021.109194

  15. Paixão, M.V.G., da Silva Fernandes, R., de Souza, E.A., and de Carvalho Balaban, R., J. Mol. Liq., 2021, vol. 341, p. 116931. https://doi.org/10.1016/j.molliq.2021.116931

    Article  CAS  Google Scholar 

  16. Zhu, W., Zheng, X., Shi, J., and Wang, Y., J. Petrol. Sci. Eng., 2021, vol. 205, p. 108821. https://doi.org/10.1016/j.petrol.2021.108821

    Article  CAS  Google Scholar 

  17. Mech, D., Das, B.M., Sunil, A., Areekkan, M., and Imaad, S., Energy and Climate Change, 2020, vol. 1, p. 100007. https://doi.org/10.1016/j.egycc.2020.100007

    Article  Google Scholar 

  18. Murtaza, M., Tariq, Z., Zhou, X., Al-Shehri, D., Mahmoud, M., and Kamal, M.S., J. Petrol. Sci. Eng., 2021, vol. 204, p. 108743. https://doi.org/10.1016/j.petrol.2021.108743

  19. Rezaei, A. and Shadizadeh, S.R., Chem. Eng. Res. Des., 2021, vol. 170, pp. 350–365. https://doi.org/10.1016/j.cherd.2021.04.012

  20. Ettehadi, A., Ülker, C., and Altun, G., J. Petrol. Sci. Eng., 2022, vol. 208, pt. B, p. 109210. https://doi.org/10.1016/j.petrol.2021.109210

    Article  CAS  Google Scholar 

  21. Gao, X., Zhong, H., Zhang, X., Chen, A., Qiu, Z., and Huang, W., Petrol. Sci., 2021, vol. 18, no. 4, pp. 1163–1181. https://doi.org/10.1016/j.petsci.2021.05.005

    Article  CAS  Google Scholar 

  22. Peixoto, R.D.L., Bicudo, T.C., Moura, H.O.M., de Araujo, Sousa, A.S., and de Carvalho, L.S., J. Petrol. Sci. Eng., 2021, vol. 199, p. 108301. https://doi.org/10.1016/j.petrol.2020.108301

    Article  CAS  Google Scholar 

  23. Shen, X., Jiang, G., Li, X., He, Y., Yang, L., Cui, K., and Li, W., Colloid. Surf. A: Phys.-Chem. Eng. Asp., 2021, vol. 627, p. 127182. https://doi.org/10.1016/j.colsurfa.2021.127182

  24. He, J., Lu, Y., Tang, J., and Ou, C., J. Nat. Gas Sci. Eng., 2021, vol. 94, p. 104080. https://doi.org/10.1016/j.jngse.2021.104080

  25. Bavoh, C.B., Adam, J.M., and Lal, B., Materials Today: Proc., 2021, vol. 57, pt. 3, pp. 1002–1007. https://doi.org/10.1016/j.matpr.2021.08.028

    Article  CAS  Google Scholar 

  26. Zhao, K., Fan, J., Yu, B., Han, J.Y., Xu, Y.H., and Gao, S.H., Oil Drilling and Production Technology, 2016, vol. 38, no. 3, pp. 277–285. https://doi.org/10.13639/j.odpt.2016.03.001

    Article  Google Scholar 

  27. Liu, X.L., You, F.C., Wu, S.Z., Yan, R., and Deng, C., Contempor. Chem. Industr., 2020, vol. 49, no. 1, pp. 129–133. https://doi.org/10.3969/j.issn.1671-0460.2020.01.032

    Article  Google Scholar 

  28. Chen, Z.X., Lan, F., Liang, W., and Zhang, S.Q., Oilfield Chem., 2019, vol. 36, no. 1, pp. 1–6. https://doi.org/10.19346/j.cnki.1000-4092.2019.01.001

  29. Zheng, S., Special Oil and Gas Reservoirs, 2019, vol. 26, no. 1, pp. 87–93. https://doi.org/10.3969/j.issn.1006-6535.2019.01.015

    Article  Google Scholar 

  30. Tan, S.Q., Fault-Block Oil and Gas Field, 2013, vol. 20, no. 5, pp. 551–555. https://doi.org/10.6056/dkyqt201305002

    Article  Google Scholar 

  31. Vivas, C. and Salehi, S., Geotherm., 2021, vol. 96, p. 102219. https://doi.org/10.1016/j.geothermics.2021.102219

    Article  Google Scholar 

  32. Xiao, Y., Yang, H.Y., and Li, C.C., Contempor. Chem. Industr., 2018, vol. 47, no. 2, pp. 316–319. https://doi.org/10.3969/j.issn.1671-0460.2018.02.026

    Article  Google Scholar 

  33. Wang, X.B., Nature Gas Exploration and Development, 2017, vol. 40, no. 1, pp. 93–100. https://doi.org/10.12055/gaskk.issn.1673-3177.2017.01.016

    Article  Google Scholar 

  34. Li, Y., Yang, G.X., and Fan, Z.G., J. Oil Gas Technol., 2014, vol. 36, no. 12, pp. 137–142. https://doi.org/10.3969/j.issn.1000-9752.2014.12.033

  35. Chen, Y.J., Deng, C.G., and Ma, T.S., Nature Gas Industry, 2019, vol. 39, no. 11, pp. 97–104. https://doi.org/10.3787/j.issn.1000-0976.2019.11.013

    Article  Google Scholar 

  36. Kong, Y., Yang, X.H., and Xu, J., Drill. Fluid Complet. Fluid, 2016, vol. 33, no. 6, pp. 17–22. https://doi.org/10.3969/j.issn.1001-5620.2016.06.003

    Article  Google Scholar 

  37. Test Method for Physical and Chemical Properties of Shale by Drilling Fluid: SY/T 5613-2016 [S], 2016.

Download references

Funding

This work was jointly supported by the Innovation Fund of Petro-China: Research on Intelligent Prediction of Complex Risks in Drilling Engineering Based on Machine Learning (2020D-5007-0307), the Study on the mechanism and protection technology of sand erosion from middle and shallow geothermal wellbore, Changzhou Social Development Fund (CE20205053), and the State key Research and development program: Unconsolidated sandstone thermal reservoir protection and efficiency drilling and completion technology and materials (2019YFB1504201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Deng.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Deng, S., Zhang, Y. et al. Research on Nano Inhibition and Plugging Potassium Amine Polysulfonate Drilling Fluid System to Prevent Wellbore Instability in Deep Complex Formations. Pet. Chem. 63, 336–354 (2023). https://doi.org/10.1134/S0965544122100152

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544122100152

Keywords:

Navigation