Skip to main content
Log in

Effects of the Synthesis Conditions and Structural Characteristics of Zeolites on the Adsorption of β-Galactosidase

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The paper is devoted to characterization of BEA and MFI zeolite samples synthesized in alkaline and fluoride media. Using a number of synthesized and commercial samples, enzyme adsorption isotherms were recorded, specifically for Aspergillus oryzae β-galactosidase. The highest adsorption capacity (32–33 mg/g) was achieved on fine-crystalline (0.2–0.6 μm) MFI samples. The fine-crystalline BEA samples (0.3–1 and ˂0.1 μm) exhibited maximal adsorption capacities of 18 and 26 mg/g, respectively. The coarse-crystalline BEA and MFI zeolites prepared by fluoride synthesis reached a markedly lower enzyme adsorption capacity, not exceeding 6 mg/g. The NMR spectroscopy data indicate that the low adsorption capacity of the zeolites synthesized in fluoride media was not only owing to their crystal size but also to the low content of hydroxyl groups on their surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Harju, M., Kallioinen, H., and Tossavainen, O., Int. Dairy J., 2012, vol. 22, pp. 104–109. https://doi.org/10.1016/j.idairyj.2011.09.011

    Article  CAS  Google Scholar 

  2. Kuribayashi, L.M., do Rio Ribeiro, V.P., de Santana, R.C., Ribeiro, E.J., dos Santos, M.G., Falleiros, L.N.S.S., and Guidini, C.Z., Appl. Microbiol. Biotechnol., 2021, vol. 105, pp. 3601–3610. https://doi.org/10.1007/s00253-021-11325-8

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, H., Jiang, Z., Xia, Q., and Zhou, D., Biochem. Eng. J., 2021, vol. 172, p. 108033. https://doi.org/10.1016/j.bej.2021.108033

    Article  CAS  Google Scholar 

  4. Poletto, M., Parascandola, P., Saracino, I., and Cifarelli, G., Int. J. Chem. React. Eng., 2005, vol. 3, no. 1. https://doi.org/10.2202/1542-6580.1275

  5. Corma, A., Fornés, V., Jordá, J.L., Rey, F., FernandezLafuente, R., Guisan, J.M., and Mateo, C., Chem. Commun., 2001, pp. 419–420. https://doi.org/10.1039/b009232k

  6. Tavolaro, A., Tavolaro, P., and Drioli, E., Colloids Surf., B, 2007, vol. 55, pp. 67–76. https://doi.org/10.1016/j.colsurfb.2006.11.010

    Article  CAS  Google Scholar 

  7. Wu, J., Li, X., Yan, Y., Hu, Y., Zhang, Y., and Tang, Y., J. Colloid. Interface Sci., 2013, vol. 406, pp. 130–138. https://doi.org/10.1016/j.jcis.2013.05.073

    Article  CAS  PubMed  Google Scholar 

  8. Atyaksheva, L.F., Dobryakova, I.V., Kostyukov, I.A., and Kolyagin, Yu.G., Petrol. Chem., 2022, vol. 62, no. 3, pp. 316–321. https://doi.org/10.1134/S0965544122030021

  9. Matsui, M., Kiyozumi, Y., Mizushina, Y., Sakaguchi, K., and Mizukami, F., Sep. Purif. Technol., 2015, vol. 149, pp. 103–109. https://doi.org/10.1016/j.seppur.2015.05.023

    Article  CAS  Google Scholar 

  10. Camblor, M.A., Corma, A., and Valencia, S., J. Mater. Chem., 1998, vol. 8, pp. 2137–2145. https://doi.org/10.1039/A804457K

    Article  CAS  Google Scholar 

  11. Pavlov, V.S., Bruter, D.V., Konnov, S.V, and Ivanova, I.I., Petrol. Chem., 2020, vol. 60, no. 8, pp. 929–936. https://doi.org/10.1134/S0965544120080095

    Article  CAS  Google Scholar 

  12. Ivanova, I.I. and Knyazeva, E.E., RF Patent 2640236, 2017

  13. Tanaka, Y., Kagamiishi, A., Kiuchi, A., and Horiuchi, T., J. Biochem., 1975, vol. 77, pp. 241–247. https://doi.org/10.1093/oxfordjournals.jbchem.a130713

    Article  CAS  PubMed  Google Scholar 

  14. Atyaksheva, L.F., Fedosov, D.A., Ivanova, M.V., Kasyanov, I.A., Kolozhvari, B.A., and Ivanova, I.I., Russ. J. Phys. Chem. A, 2018, vol. 92, no. 9, pp. 1846–1850. https://doi.org/10.1134/S0036024418090042

    Article  CAS  Google Scholar 

  15. Chukhrai, E.S., Atyaksheva, L.F., and Pilipenko, O.S., Russ. J. Phys. Chem. A, 2011, vol. 85, no. 5, pp. 888–894. https://doi.org/10.1134/S0036024411050086

    Article  CAS  Google Scholar 

Download references

Funding

The study was financially supported by the Russian Science Foundation (RSF Grant no. 20-13-00203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. F. Atyaksheva.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atyaksheva, L.F., Andriako, E.P., Bachurina, D.O. et al. Effects of the Synthesis Conditions and Structural Characteristics of Zeolites on the Adsorption of β-Galactosidase. Pet. Chem. 62, 980–987 (2022). https://doi.org/10.1134/S0965544122070040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544122070040

Keywords:

Navigation