Skip to main content

Gas Hydrates in Man-Made Environments: Applications, Economics, Challenges and Future Directions

  • Chapter
  • First Online:
Status and Future Challenges for Non-conventional Energy Sources Volume 1

Abstract

This chapter expands on the exciting applications of gas (or clathrate) hydrates in advanced gas storage, transportation, separation and refrigeration systems. The global hydrate research community has expanded considerably since the early 2000s, delivering new insight as to the exploitative potential and cross-interactions between hydrate thermodynamics, kinetics and transport behaviour. Of the many developments, one consistent lesson continues to emerge around the exploitation of functional chemistry—which itself must be developed with a knowledge of how chemical moieties affect performance—to exert control of the thermodynamic and kinetic properties of the application. Future research into hydrate-based storage and transportation, the array of gas separation applications and the significant potential around industrial refrigeration will continue to grow through these functional chemistries, which also carry the potential to significantly reduce the safety and operating constraints on future generations of natural gas production systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aman ZM, Koh CA (2016) Interfacial phenomena in gas hydrate systems. Chem Soc Rev 45:1678–1690

    CAS  Google Scholar 

  • Anderson R, Chapoy A, Tohidi B (2007) Phase relations and binary clathrate hydrate formation in the system H2−THF−H2O. Langmuir 23:3440–3444

    CAS  Google Scholar 

  • Babu P, Linga P, Kumar R, Englezos P (2015) A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture. Energy 85:261–279

    CAS  Google Scholar 

  • Babu P, Nambiar A, He T, Karimi IA, Lee JD, Englezos P, Linga P (2018) A review of clathrate hydrate based desalination to strengthen energy–water Nexus. ACS Sustain Chem Eng 6:8093–8107

    CAS  Google Scholar 

  • Burgers WFJ, Northrop PS, Kheshgi HS, Valencia JA (2011) Worldwide development potential for sour gas. Energy Procedia 4:2178–2184

    Google Scholar 

  • Collett T (2006) USGS: Gas Hydrates in Marine Sediments from the Indian Ocean (https://www.usgs.gov/media/images/gas-hydrates-marine-sediments-indian-ocean)

  • Creek JL, Subramanian S, Estanga DA (2011) New method for managing hydrates in Deepwater tiebacks. In offshore technology conference (Houston, Texas, USA, Offshore Technology Conference), p. 15

    Google Scholar 

  • Di Profio P, Arca S, Rossi F, Filipponi M (2009) Comparison of hydrogen hydrates with existing hydrogen storage technologies: energetic and economic evaluations. Int J Hydrog Energy 34:9173–9180

    Google Scholar 

  • Douzet J, Kwaterski M, Lallemand A, Chauvy F, Flick D, Herri J-M (2013) Prototyping of a real size air-conditioning system using a tetra-n-butylammonium bromide semiclathrate hydrate slurry as secondary two-phase refrigerant – experimental investigations and modelling. Int J Refrig 36:1616–1631

    CAS  Google Scholar 

  • Durbin DJ, Malardier-Jugroot C (2013) Review of hydrogen storage techniques for on board vehicle applications. Int J Hydrog Energy 38:14595–14617

    CAS  Google Scholar 

  • Eslamimanesh A, Mohammadi AH, Richon D, Naidoo P, Ramjugernath D (2012) Application of gas hydrate formation in separation processes: a review of experimental studies. J Chem Thermodyn 46:62–71

    CAS  Google Scholar 

  • Florusse LJ, Peters CJ, Schoonman J, Hester KC, Koh CA, Dec SF, Marsh KN, Sloan ED (2004) Stable low-pressure hydrogen clusters stored in a binary clathrate hydrate. Science 306:469

    CAS  Google Scholar 

  • Gudmundsson JS, Borrehaug A (1996) Frozen hydrate for transport of natural gas. In proceedings of 2nd international conference on gas hydrate (Toulouse, France)

    Google Scholar 

  • Hasegawa M (2009) Cases study of thermal energy storage air conditioning system using CHS. Pump Appl 78:26–29

    Google Scholar 

  • Hidemasa O, Shingo T (2004) Air-conditioning system using clathrate hydrate slurry, JFE Technical Report-3. pp. 1–7

    Google Scholar 

  • IEA (2019) The future of hydrogen. IEA, Paris, France

    Google Scholar 

  • Jadhawar P, Yang J, Chapoy A, Tohidi B (2020) Subsurface carbon dioxide sequestration and storage in methane hydrate reservoirs combined with clean methane energy recovery. Energy & Fuels 35:1567–1579. https://doi.org/10.1021/acs.energyfuels.0c02839

    Article  CAS  Google Scholar 

  • Jadhawar PS, Mohammadi AH, Yang J, Tohidi B (2006) In: Lombardi A, Beaubien S (eds) Advances in the geological storage of carbon dioxide, vol 65. Springer, Cham, pp 111–126

    Google Scholar 

  • Kanda H (2006) Economic study on natural gas transportation with natural gas hydrate (NGH) pellets. In 23rd world gas conference, Amsterdam

    Google Scholar 

  • Kelland MA (2006) History of the development of low dosage hydrate inhibitors. Energy Fuel 20:825–847

    CAS  Google Scholar 

  • Kumar A, Bhattacharjee G, Kulkarni BD, Kumar R (2015) Role of surfactants in promoting gas hydrate formation. Ind Eng Chem Res 54:12217–12232

    CAS  Google Scholar 

  • Kumar A, Di Lorenzo M, Kozielski K, Glénat P, May EF, Aman ZM (2020) Hydrate blockage assessment in a pilot-scale subsea jumper. In offshore technology conference (Houston, Texas, USA, Offshore Technology Conference), p 8

    Google Scholar 

  • Kumar A, Veluswamy HP, Kumar R, Linga P (2019) Direct use of seawater for rapid methane storage via clathrate (sII) hydrates. Appl Energy 235:21–30

    CAS  Google Scholar 

  • Li G, Hwang Y, Radermacher R (2012) Review of cold storage materials for air conditioning application. Int J Refrig 35:2053–2077

    CAS  Google Scholar 

  • Mao WL, Mao HK (2004) Hydrogen storage in molecular compounds. Proc Natl Acad Sci U S A 101:708

    CAS  Google Scholar 

  • Melaina MW, Antonia O, Penev M (2013). Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues, Technical Report NREL/TP-5600-51995. (National Renewable Energy Laboratory)

    Google Scholar 

  • Nakayama T, Tomura S, Ozaki M, Ohmura R, Mori YH (2010) Engineering investigation of hydrogen storage in the form of clathrate hydrates: conceptual design of hydrate production plants. Energy Fuel 24:2576–2588

    CAS  Google Scholar 

  • NERA (2019) Creating our new energy futures: jumping into the deep end — how understanding the mechanics of hydrates can save industry hundreds of millions

    Google Scholar 

  • Ogi Y (2007) Cases study of thermal energy storage air conditioning system using CHS in Kawasaki underground Azalea. Pump Appl 74:35–38

    Google Scholar 

  • Oyama H, Shimada W, Ebinuma T, Kamata Y, Takeya S, Uchida T, Nagao J, Narita H (2005) Phase diagram, latent heat, and specific heat of TBAB semiclathrate hydrate crystals. Fluid Phase Equilib 234:131–135

    CAS  Google Scholar 

  • Phillips NJ, Grainger M (1998) Development and application of kinetic hydrate inhibitors in the North Sea. In: SPE gas technology symposium. Society of Petroleum Engineers, Calgary, AB, Canada, p 8

    Google Scholar 

  • Sabil KM, Partoon B (2018) Recent advances on carbon dioxide capture through a hydrate-based gas separation process. Curr Opin Green Sustainable Chem 11:22–26

    Google Scholar 

  • Sakamoto H, Sato K, Shiraiwa K, Takeya S, Nakajima M, Ohmura R (2011) Synthesis, characterization and thermal-property measurements of ionic semi-clathrate hydrates formed with tetrabutylphosphonium chloride and tetrabutylammonium acrylate. RSC Adv 1:315–322

    CAS  Google Scholar 

  • Sakamoto J, Hashimoto S, Tsuda T, Sugahara T, Inoue Y, Ohgaki K (2008) Thermodynamic and Raman spectroscopic studies on hydrogen+tetra-n-butyl ammonium fluoride semi-clathrate hydrates. Chem Eng Sci 63:5789–5794

    CAS  Google Scholar 

  • Shi XJ, Zhang P (2013) A comparative study of different methods for the generation of tetra-n-butyl ammonium bromide clathrate hydrate slurry in a cold storage air-conditioning system. Appl Energy 112:1393–1402

    CAS  Google Scholar 

  • Shibata T, Yamachi H, Ohmura R, Mori YH (2012) Engineering investigation of hydrogen storage in the form of a clathrate hydrate: conceptual designs of underground hydrate-storage silos. Int J Hydrog Energy 37:7612–7623

    CAS  Google Scholar 

  • Shimada W, Shiro M, Kondo H, Takeya S, Oyama H, Ebinuma T, Narita H (2005) Tetra-n-butylammonium bromide-water (1/38). Acta Crystallogr C 61:o65–o66

    Google Scholar 

  • Sloan D, Creek J, Sum AK (2011) Chapter two-where and how are hydrate plugs formed? In: Sloan D, Koh C, Sum AK, Ballard AL, Creek J, Eaton M, Lachance J, McMullen N, Palermo T, Shoup G, Talley L (eds) Natural gas hydrates in flow assurance. Gulf Professional, Boston, MA, pp 13–36

    Google Scholar 

  • Sloan ED Jr, Koh CA, Koh C (2007) Clathrate hydrates of natural gases. CRC Press, Boca Raton, MA

    Google Scholar 

  • Strobel TA, Hester KC, Koh CA, Sum AK, Sloan ED (2009) Properties of the clathrates of hydrogen and developments in their applicability for hydrogen storage. Chem Phys Lett 478:97–109

    CAS  Google Scholar 

  • Struzhkin VV, Militzer B, Mao WL, Mao HK, Hemley RJ (2007) Hydrogen storage in molecular clathrates. Chem Rev 107:4133–4151

    CAS  Google Scholar 

  • Sugahara T, Haag JC, Prasad PSR, Warntjes AA, Sloan ED, Sum AK, Koh CA (2009) Increasing hydrogen storage capacity using tetrahydrofuran. J Am Chem Soc 131:14616–14617

    CAS  Google Scholar 

  • Suginaka T, Sakamoto H, Iino K, Takeya S, Nakajima M, Ohmura R (2012) Thermodynamic properties of ionic semiclathrate hydrate formed with tetrabutylphosphonium bromide. Fluid Phase Equilib 317:25–28

    CAS  Google Scholar 

  • Tajima H, Yamasaki A, Kiyono F (2004) Energy consumption estimation for greenhouse gas separation processes by clathrate hydrate formation. Energy 29:1713–1729

    CAS  Google Scholar 

  • Takao S, Matsumoto S, Takashi K, Sugiyama M, Akiyama T, Fukushima S (2001b) New air conditioning systems using hydrate slurry. pp 6–11

    Google Scholar 

  • Takao S, Ogoshi H, Fukushima S, Matsumoto S, JFE Engineering Corp., Tokyo (JP) (2004) Thermal storage medium using a hydrate and apparatus thereof, and method for producing the thermal storage medium

    Google Scholar 

  • Takao S, Ogoshi H, Matsumoto S, NKK corporation, Tokyo (JP) (2001a) Air-conditioning and thermal storage systems using clathrate hydrate slurry

    Google Scholar 

  • Veluswamy HP, Kumar A, Seo Y, Lee JD, Linga P (2018) A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates. Appl Energy 216:262–285

    CAS  Google Scholar 

  • Veluswamy HP, Kumar R, Linga P (2014) Hydrogen storage in clathrate hydrates: current state of the art and future directions. Appl Energy 122:112–132

    CAS  Google Scholar 

  • Veluswamy HP, Linga P (2013) Macroscopic kinetics of hydrate formation of mixed hydrates of hydrogen/tetrahydrofuran for hydrogen storage. Int J Hydrog Energy 38:4587–4596

    CAS  Google Scholar 

  • Veluswamy HP, Wong AJH, Babu P, Kumar R, Kulprathipanja S, Rangsunvigit P, Linga P (2016) Rapid methane hydrate formation to develop a cost effective large scale energy storage system. Chem Eng J 290:161–173

    CAS  Google Scholar 

  • Wang X, Dennis M (2015) An experimental study on the formation behavior of single and binary hydrates of TBAB, TBAF and TBPB for cold storage air conditioning applications. Chem Eng Sci 137:938–946

    CAS  Google Scholar 

  • Zhang P, Ma ZW (2012) An overview of fundamental studies and applications of phase change material slurries to secondary loop refrigeration and air conditioning systems. Renew Sust Energ Rev 16:5021–5058

    CAS  Google Scholar 

  • Zhang P, Ma ZW, Wang RZ (2010) An overview of phase change material slurries: MPCS and CHS. Renew Sust Energ Rev 14:598–614

    CAS  Google Scholar 

  • Zhiming Z, Qingqing P, Yue S (2010) Phase change cold storage and latent heat transfer by TBAB as secondary refrigerant technique applied to air-conditioning system. Refrig Air condition 10:30–33

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asheesh Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, A., Veluswamy, H.P., Jadhawar, P., Chapoy, A., Aman, Z. (2022). Gas Hydrates in Man-Made Environments: Applications, Economics, Challenges and Future Directions. In: Joshi, S.J., Sen, R., Sharma, A., Salam, P.A. (eds) Status and Future Challenges for Non-conventional Energy Sources Volume 1. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-16-4505-1_9

Download citation

Publish with us

Policies and ethics