Skip to main content
Log in

Structural Characteristics and Interfacial Properties of n-Hexane- and n-Heptane-Asphaltenes

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

In this study, n-hexane-asphaltenes (X–A) and n-heptane-asphaltenes (P–A) were separated and collected by n-hexane and n-heptane respectively. The two asphaltenes were divided into six subfractions (A1–A6) by the mixed solvent (toluene/n-hexane or toluene/n-heptane). The differences between X–A and P–A were studied and the differences between subfractions were compared. And the effects of X–A, P–A and subfractions on oil-water interfacial tension (IFT) were evaluated. The content and polarity of X–A are greater than that of P–A. The ability of X–A reducing oil/water IFT is stronger than that of P–A. The structures of X–A and P–A were simply speculated by the improved B–L method (Bitumen–Liquid product method is used to calculate structural parameters). Both P–A and X–A are cata-condensed and they are mainly tricyclic-aromatics. Moreover, X–A is a kind of high condensation aromatic polymer with regular arrangement, short alkyl chains, low rigidity and more naphthenic rings. P–A is a kind of high condensation aromatic polymer with poor arrangement regularity, long alkyl chains, large rigidity, more aromatic rings but slightly less condensation degree than X–A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Rane, J.P., Harbottle, D., Pauchard, V., Couzis, A., and Banerjee, S., Langmuir, 2012, vol. 28, pp. 9986–9995. https://doi.org/10.1021/la301423c

    Article  CAS  PubMed  Google Scholar 

  2. Langevin, D. and Argillier, J.F., Adv. Colloid Interface Sci., 2016, vol. 233, pp. 83–93. https://doi.org/10.1016/j.cis.2015.10.005

    Article  CAS  PubMed  Google Scholar 

  3. Liu, J., Zhao, Y.P., and Ren, S., Energy Fuels, 2015, vol. 29, pp. 1233–1242. https://doi.org/10.1021/ef5019737

    Article  CAS  Google Scholar 

  4. Horvath-Szabo, G., Masliyah, J.H., Elliott, J.A.W., Yarranton, H.W., and Czarnecki, J., J. Colloid Interface Sci., 2005, vol. 283, pp. 5–17. https://doi.org/10.1016/j.jcis.2004.08.174

    Article  CAS  PubMed  Google Scholar 

  5. Sheu, E., Energy Fuels, 2002, vol. 16, pp. 74–82. https://doi.org/10.1021/ef010160b

    Article  CAS  Google Scholar 

  6. Groenzin, H. and Mullins, O.C., Phys. Chem. A, 1999, vol. 103, pp. 11237–11245. https://doi.org/10.1021/jp992609w

    Article  CAS  Google Scholar 

  7. Eyssautier, J., Levitz, P., Espinat, D., Jestin, J., Gummel, J., Grillo, I. and Barré, L., J. Phys. Chem. B, 2011, vol. 115, pp. 6827–6837. https://doi.org/10.1021/jp111468d

    Article  CAS  PubMed  Google Scholar 

  8. Kuznicki, T., Masliyah, J.H., and Bhattacharjee, S., Energy Fuels, 2009, vol. 23, pp. 5027–5035. https://doi.org/10.1021/ef9004576

    Article  CAS  Google Scholar 

  9. Mitra-Kirtley, S., Mullins, O.C., Van Elp, J., George, S.J., Chen, J., and Cramer, S.P., J. Am. Chem. Soc., 1993, vol. 115, pp. 252–258. https://doi.org/10.1021/ja00054a036

    Article  CAS  Google Scholar 

  10. Cheshkova, T.V., Sergun, V.P., Kovalenko, E.Y., Gerasimova, N.N., Sagachenko, T.A., and Min, R.S., Energy Fuels, 2019, vol. 33, pp. 7971–7982. https://doi.org/10.1021/acs.energyfuels.9b00285

    Article  CAS  Google Scholar 

  11. Liu, P., Shi, Q., Chung, K.H., Zhang, Y.H., Pan, N., Zhao, S.Q., and Xu, C.M., Energy Fuels, 2010, vol. 24, pp. 5089–5096. https://doi.org/10.1021/ef100904k

    Article  CAS  Google Scholar 

  12. Mitra-Kirtley, S., Mullins, O.C., Ralston, C.Y., Sellis, D. and Pareis, C., Appl. Spectrosc., 1998, vol. 52, pp. 1522–1525. https://doi.org/10.1366/0003702981943220

    Article  CAS  Google Scholar 

  13. Greenfield, M.L., Byrne, M., Mitra-Kirtley, S., Kercher, E.M., Bolin, T.B., Wu, T.P., Craddock, P.R., Bake, K.D., and Pomerantz, A.E., Fuel, 2015, vol. 162, pp. 179–185. https://doi.org/10.1016/j.fuel.2015.08.074

    Article  CAS  Google Scholar 

  14. Chacon-Patino, M.L., Rowland, S.M., and Rodgers, R.P., Energy Fuels, 2017, vol. 31, pp. 13509–13518. https://doi.org/10.1021/acs.energyfuels.7b02873

    Article  CAS  Google Scholar 

  15. Boussingault, J.B., Annali di Chimica, 1837, vol. 64, pp. 113–141.

    Google Scholar 

  16. Sabbah, H., Morrow, A.L., Pomerantz, A.E., and Zare, R.N., Energy Fuels, 2011, vol. 25, pp. 1597–1604. https://doi.org/10.1021/ef101522w

    Article  CAS  Google Scholar 

  17. Ruiz-Morales, Y., Miranda-Olvera, A.D., PortalesMartinez, B. and Dominguez, J.M., Energy Fuels, 2020, vol. 34, pp. 7985–8006. https://doi.org/10.1021/acs.energyfuels.0c00593

    Article  CAS  Google Scholar 

  18. Liao, Z.W., Zhou, H.G., Graciaa, A., Chrostowska, A., Creux, P., and Geng, A., Energy Fuels, 2005, vol. 19, pp. 180–186. https://doi.org/10.1021/ef049868r

    Article  CAS  Google Scholar 

  19. Mullins, O.C., Sabbah, H., Eyssautier, J., Pomerantz, A.E., Barre, L., Andrews, A.B., Morales, Y.R., Mostowfi, F., Mcfarlane, R., Goual, L., Lepkowicz, R., Cooper, T., Orbulescu, J., Leblanc, R.M., Edwards, J., and Zare, R.N., Energy Fuels, 2012, vol. 26, pp. 3986–4003. https://doi.org/10.1021/ef300185p

    Article  CAS  Google Scholar 

  20. Zhao, R.H., Huang, H.Y., Dong, L.F., Zhang, L., Zhang, L., and Zhao, S., Acta Petrolei Sinica (Petrol. Proc. Sect.), 2012, vol. 5, pp. 827–833. https://doi.org/10.3969/j.issn.1001-8719.2012.05.019

    Article  CAS  Google Scholar 

  21. Yang, L., Li, Q.Q., and Tian, Y.C., Petroleum Geology & Oilfield Development in Daqing, 2000, vol. 19, pp. 37–39. https://doi.org/10.3969/j.issn.1000-3754.2000.02.013

    Article  Google Scholar 

  22. Zhao, C.M., Zhang, L., Wang, Y., Cheng, T.X., Yang, W.S., and Zhou, G.D., Tenside Surf. Det., 2018, vol. 55, pp. 317–324. https://doi.org/10.3139/113.110569

    Article  CAS  Google Scholar 

  23. Wang, Y., Zhao, C.M., Jiang, Y.L., Jia, X.M., Cheng, T.X., Zhou, G.D., Chem. Phys. Lett., 2019, vol. 728, pp. 201–207. https://doi.org/10.1016/j.cplett.2019.05.013

    Article  CAS  Google Scholar 

  24. Jiang, Y.L., Zhao, C.M., Wang, Y., Cheng, T.X., and Zhou, G.D., J. Dispers. Sci. Technol., 2019, vol. 41, no 6, pp. 809–816. https://doi.org/10.1080/01932691.2019.1612249

    Article  CAS  Google Scholar 

  25. Jia, X.M., Cheng, T.X. and Zhou, G.D., Chem. J. Chinese Univ., 2020, vol. 41, no 7, pp. 1631–1637. https://doi.org/10.7503/cjcu20200099

    Article  CAS  Google Scholar 

  26. Asemani, M. and Rabbani, A.R., Geosci. J., 2016, vol. 20, pp. 273–283. https://doi.org/10.1007/s12303-015-0042-1

    Article  CAS  Google Scholar 

  27. Venkataraman, P., Zygourakis, K., Chapman, W.G., Wellington, S.L., and Shammai, M., Energy Fuels, 2017, vol. 31, pp. 1182–1192. https://doi.org/10.1021/acs.energyfuels.6b02322

    Article  CAS  Google Scholar 

  28. Michels, R., Langlois, E., Ruau, O., Mansuy, L., Elie, M., and Landais, P., Energy Fuels, 1996, vol. 10, pp. 39–48. https://doi.org/10.1021/ef9501410https://doi.org/10.1021/ef9501410

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangdong Zhou.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Cheng, T. & Zhou, G. Structural Characteristics and Interfacial Properties of n-Hexane- and n-Heptane-Asphaltenes. Pet. Chem. 62, 740–751 (2022). https://doi.org/10.1134/S0965544122050139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544122050139

Keywords:

Navigation