Skip to main content
Log in

Steam Reforming of Methane and Its Mixtures with Propane in a Membrane Reactor with Industrial Nickel Catalyst and Palladium–Ruthenium Foil

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Steam reforming of methane and its mixtures containing 5 and 10% propane has been studied in a membrane reactor with an industrial nickel catalyst NIAP-03-01 and a membrane in the form of 30-μm foil made of a Pd–Ru alloy. At T = 823 K and a feed space velocity of 1800 h−1, the almost complete methane conversion is achieved, the selectivity for CO2 is more than 50%, and about 80% H2 is recovered from the reaction mixture. High conversion of CH4 in the membrane reactor under mild conditions allows the steam reforming of its mixtures with C2+ alkanes to be conducted in a single process, as shown by the example of model mixtures containing C3H8. Under selected conditions (T = 773 or 823 K, a feed space velocity of 1800 or 3600 h−1, a steam/methane ratio of 3 or 5, atmospheric pressure), almost complete C3H8 conversion is observed. The main “undesirable” reaction is methanation, leading to a decrease in the CH4 conversion. In the system under study, CH4 is formed with an increase in the feed space velocity. Methanation occurs as a result of C3H8 hydrocracking at a steam/feedstock ratio = 3 or the hydrogenation of CO2 as this ratio is increased to 5. The optimal conditions for steam reforming of methane mixtures containing up to 10% C3H8 are T = 823 K, steam/feedstock ratio = 5, and the feed space velocity of 1800 h−1. Under these conditions involving evacuation of the permeate, the feedstock conversion is complete, the selectivity for CO2 is 50%, and more than 70% H2 is recovered from the reaction mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. S. J. Peighambardoust, S. Rowshanzamir, and M. Amjjadi, J. Hydrogen Energy 35, 9349 (2010).

    Article  CAS  Google Scholar 

  2. S. A. Skrylev, Energ. Strateg., No. 2, 15 (2012).

  3. I. V. Kozodoev, N. A. Kuzin, Yu. I. Amosov, et al., Ind. Ecol. North. 11, 40 (2011).

    Google Scholar 

  4. G. S. Fal’kovich, N. N. Rostanin, L. M. Vilenskii, et al., Katal. Prom-sti, No. 3, 10 (2003).

    Google Scholar 

  5. V. S. Arutyunov and O. V. Krylov, Oxidative Conversion of Methane (Nauka, Moscow, 1998) [in Russian].

    Google Scholar 

  6. K. Aasberg-Petersen, I. Dybkjaer, C. V. Ovesen, et al., J. Nat. Gas Sci. Eng. 3, 423 (2011).

    Article  CAS  Google Scholar 

  7. S. Yoon and J. Bae, Catal. Today 156, 49 (2010).

    Article  CAS  Google Scholar 

  8. X. Wang, X. Zou, X. Wang, et al., Int. J. Hydrogen Energy 36, 4908 (2011).

    Article  CAS  Google Scholar 

  9. B. T. Schadel, M. Duisberg, and O. Deutschmann, Catal. Today 142, 42 (2009).

    Article  CAS  Google Scholar 

  10. Y. Chen, Y. Wang, H. Xu, and G. Xiong, Appl. Catal., B 80, 283 (2008).

    Article  CAS  Google Scholar 

  11. M. Saric, Y. C. Delft, R. Sumbharaju, et al., Catal. Today 193, 74 (2012).

    Article  CAS  Google Scholar 

  12. J. Y. Matsumura and J. Tong, Top. Catal. 51, 283 (2008).

    Article  CAS  Google Scholar 

  13. G. Burkhanov, N. Gorina, N. Kolchugina, and N. Roshan, Platinum Met. Rev. 55, 3 (2011).

    Article  CAS  Google Scholar 

  14. L. Didenko, V. Savchenko, L. Sementsova, and L. Bikov, Int. J. Hydrogen Energy 41, 307 (2016).

    Article  CAS  Google Scholar 

  15. V. M. Ievlev, K. A. Solntsev, A. I. Dontsov, et al., Tech. Phys. 61, 467 (2016).

    Article  CAS  Google Scholar 

  16. V. M. Ievlev, A. A. Maksimenko, A. I. Sitnikov, et al., Materialovedenie, No. 2, 37 (2016).

    Google Scholar 

  17. V. M. Ievlev, G. S. Burkhanov, A. A. Maksimenko, et al., Kondens. Sredy Mezhfaz. Granitsy 15, 121 (2013).

    Google Scholar 

  18. Y. Shirasaki, T. Tsuneki, Y. Ota, et al., Int. J. Hydrogen Energy 34, 4482 (2009).

    Article  CAS  Google Scholar 

  19. L. P. Didenko, L. A. Sementsova, P. E. Chizhov, et al., Russ. Chem. Bull. 65, 1997 (2016).

    Article  CAS  Google Scholar 

  20. S. Campanari, E. Macchi, and G. Manzolini, Int. J. Hydrogen Energy 33, 1361 (2008).

    Article  CAS  Google Scholar 

  21. P. Ciavarella, D. Casanave, H. Moueddeb, et al., Catal. Today 67, 177 (2001).

    Article  CAS  Google Scholar 

  22. L. van Dyk, S. Miachon, L. Lorenzen, et al., Catal. Today 82, 167 (2003).

    Article  CAS  Google Scholar 

  23. S. Miachon and J.-A. Dalmon, Top. Catal. 29, 59 (2004).

    Article  CAS  Google Scholar 

  24. L. P. Didenko, V. I. Savchenko, L. A. Sementsova, and P. E. Chizhov, Pet. Chem. 56, 459 (2016).

    Article  CAS  Google Scholar 

  25. M. V. Zyryanova, P. V. Snytnikov, A. B. Shigarov, et al., Fuel 135, 76 (2014).

    Article  CAS  Google Scholar 

  26. M. M. Zyryanova, S. D. Badmaev, V. D. Belyaev, Yu. I. Amosov, P. V. Snytnikov, V. A. Kirillov, V. A. Sobyanin, Catal. Ind. 5, 312 (2013).

    Article  Google Scholar 

  27. B. T. Schadel, M. Duisberg, and O. Deutschmann, Catal. Today 142, 42 (2009).

    Article  CAS  Google Scholar 

  28. M. A. Rarib, J. R. Grace, C. J. Lim, and S. S. E. H. Elnashaie, Int. J. Hydrogen Energy 35, 6276 (2010).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was carried out under the 2013–2020 Program of Basic Research of State Academies of Sciences, theme code 0089-2014-0032.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Didenko.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Didenko, L.P., Sementsova, L.A., Chizhov, P.E. et al. Steam Reforming of Methane and Its Mixtures with Propane in a Membrane Reactor with Industrial Nickel Catalyst and Palladium–Ruthenium Foil. Pet. Chem. 59, 394–404 (2019). https://doi.org/10.1134/S0965544119040054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544119040054

Keywords:

Navigation