Skip to main content
Log in

Catalytic Materials Based on Hydrotalcite-Like Aluminum, Magnesium, Nickel, and Cobalt Hydroxides for Partial Oxidation and Dry Reforming of Methane to Synthesis Gas

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Partial oxidation of methane and dry methane reforming to synthesis gas in the presence of catalysts based on hydrotalcite-like hydroxo salts [AlMg2Ni x Co y (OH)6.08][(NO3) n H2O], where x = 0, 0.02, 0.04 and y = 0, 0.02, 0.04 with a total Ni and/or Co content of no more than 2 wt % have been first studied. It has been shown that the Ni-containing catalysts provide a synthesis gas yield of 90 and 97% in the case of partial oxidation and dry reforming of methane, respectively; in the presence of these catalysts, a trace amount of carbon nanotubes is formed; the catalyst sample containing both nickel and cobalt does not lead to the formation of any carbon nanotubes during dry reforming of methane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Holmen, Catal. Today 142, 2 (2009).

    Article  CAS  Google Scholar 

  2. B. C. Enger, R. Lodeng, and A. Holmen, Appl. Catal., A 346, 1 (2008).

    Article  CAS  Google Scholar 

  3. S. Zeng, X. Zhang, X. Fu, et al., Appl. Catal., B 136/137, 308 (2013).

    Article  CAS  Google Scholar 

  4. A. G. Dedov, A. S. Loktev, D. A. Komissarenko, et al., Fuel Process. Technol. 148, 128 (2016).

    Article  CAS  Google Scholar 

  5. A. G. Dedov, A. S. Loktev, V. K. Ivanov, et al., Dokl. Phys. Chem. 461, 73 (2015).

    Article  CAS  Google Scholar 

  6. F. Basile, L. Basini, M. D’Amore, et al., J. Catal. 173, 247 (1998).

    Article  CAS  Google Scholar 

  7. K. M. Lee and W. Y. Lee, Catal. Lett. 83, 65 (2002).

    Article  CAS  Google Scholar 

  8. K. Takehira, T. Shishido, P. Wan, et al., J. Catal. 221, 43 (2004).

    Article  CAS  Google Scholar 

  9. T. P. Maniecki, K. Bawolak-Olczak, P. Mierczyn’ski, et al., Chem. Eng. J. 154, 142 (2009).

    Article  CAS  Google Scholar 

  10. J. R. Rostrup-Nielsen and J. H. Bak Hansen, J. Catal. 144, 38 (1993).

    Article  CAS  Google Scholar 

  11. J. Guo, H. Lou, H. Zhao, et al., Appl. Catal., A 273, 75 (2004).

    Article  CAS  Google Scholar 

  12. A. Bhattacharyya, V. W. Chang, and D. J. Schumacher, Appl. Clay Sci. 13, 317 (1998).

    Article  CAS  Google Scholar 

  13. T. Shishido, M. Sukenobu, H. Morioka, et al., Catal. Lett. 73, 21 (2001).

    Article  CAS  Google Scholar 

  14. A. I. Tsyganok, T. Tsunoda, S. Hamakawa, et al., J. Catal. 213, 191 (2003).

    Article  CAS  Google Scholar 

  15. Z. Hou and T. Yashima, Appl. Catal., A 261, 205 (2004).

    Article  CAS  Google Scholar 

  16. O. W. Perez-Lopez, A. Senger, N. R. Marcilio, and M. A. Lansarin, Appl. Catal., A 303, 234 (2006).

    Article  CAS  Google Scholar 

  17. A. Serrano-Lotina, L. Rodriguez, G. Muñoz, and L. Daza, J. Power Sources 196, 4404 (2011).

    Article  CAS  Google Scholar 

  18. A. Serrano-Lotina, A. J. Martin, M. A. Folgado, and L. Daza, Int. J. Hydrogen Energy 37, 12342 (2012).

    Article  CAS  Google Scholar 

  19. A. Serrano-Lotina and L. Daza, J. Power Sources 238, 81 (2013).

    Article  CAS  Google Scholar 

  20. A. Serrano-Lotina and L. Daza, Appl. Catal., A 474, 107 (2014).

    Article  CAS  Google Scholar 

  21. G. de Souza, C. Ruoso, N. R. Marcilio, and O. W. Perez-Lopez, Chem. Eng. Commun. 203, 783 (2016).

    Google Scholar 

  22. C. Tanios, S. Bsaibes, C. Gennequin, et al., Int. J. Hydrogen Energy 42, 12818 (2017).

    Article  CAS  Google Scholar 

  23. O. N. Krasnobaeva, I. P. Belomestnykh, G. V. Isagulyants, et al., Russ. J. Inorg. Chem. 52, 141 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Loktev.

Additional information

Original Russian Text © A.G. Dedov, A.S. Loktev, V.P. Danilov, O.N. Krasnobaeva, T.A. Nosova, I.E. Mukhin, S.I. Tyumenova, A.E. Baranchikov, V.K. Ivanov, M.A. Bykov, I.I. Moiseev, 2018, published in Neftekhimiya, 2018, Vol. 58, No. 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dedov, A.G., Loktev, A.S., Danilov, V.P. et al. Catalytic Materials Based on Hydrotalcite-Like Aluminum, Magnesium, Nickel, and Cobalt Hydroxides for Partial Oxidation and Dry Reforming of Methane to Synthesis Gas. Pet. Chem. 58, 418–426 (2018). https://doi.org/10.1134/S0965544118050055

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544118050055

Keywords

Navigation