Skip to main content
Log in

A Study of Pore Formation and Methanol Vapor Permeability in Stretched Polytetrafluoroethylene Films Used as a Precursor of Composite Ion-Exchange Membranes

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Methanol vapor permeability and pore formation features in stretched polytetrafluoroethylene (PTFE) films used as a precursor of composite cation-exchange membranes have been studied. Porous structures of the precursor have been formed via stretching PTFE films in air, toluene, isopropyl alcohol, and CCl4. Permeability has been determined according to the evaporation of a liquid through a porous film; porosity, according to the increase in the film volume during stretching; pore formation features, according to optical microscopy images of porous films and their transverse microsections. It has been found that, with an increase in the stretch ratio, the porosity of PTFE films increases almost linearly, while the methanol vapor permeability increases exponentially. The permeability of the films stretched in liquids is 20 times higher than the permeability of the films stretched in air at comparable stretch ratio and porosity values. The considerably higher permeability of the films stretched in liquids and the observed differences in their porous structure suggest that the liquids are actively involved in the formation of through pores in the direction connecting the film surfaces, i.e., in the direction that determines the transport and conductive properties of composite membranes based on stretched PTFE films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Nasef, Prog. Polym. Sci. 29, 499 (2004).

    Article  CAS  Google Scholar 

  2. S. A. Gursel, L. Gubler, B. Gupta, and G. G. Scherer, Adv. Polym. Sci. 215, 157 (2008).

    CAS  Google Scholar 

  3. M. M. Nasef, Chem. Rev. 114, 12278 (2014).

    Article  CAS  Google Scholar 

  4. S. Homberg, J. H. Nasman, and F. Sundholm, Polym. Adv. Technol. 9, 121 (1998).

    Article  Google Scholar 

  5. Z. Zhang, E. Chalkova, M. Fedkin, et al., Macromolecules 41, 9130 (2008).

    Article  CAS  Google Scholar 

  6. M. M. Hassan, L. Wu, Y. Li, et al., Sep. Purif. Technol. 150, 102 (2015).

    Article  Google Scholar 

  7. E. Yu. Safronova, D. V. Golubenko, N. V. Shevlyakova, et al., J. Membr. Sci. 515, 196 (2016).

    Article  CAS  Google Scholar 

  8. D. V. Golubenko and A. B. Yaroslavtsev, Mendeleev Commun. 27, 572 (2017).

    Article  CAS  Google Scholar 

  9. E. F. Abdrashitov, V. Ch. Bokun, D. A. Kritskaya, et al., Solid State Ionics 251, 9 (2013).

    Article  CAS  Google Scholar 

  10. A. N. Ponomarev, E. F. Abdrashitov, D. A. Kritskaya, et al., Russ. J. Electrochem. 53, 589 (2017).

    Article  CAS  Google Scholar 

  11. E. F. Abdrashitov, D. A. Kritskaya, V. Ch. Bokun, and A. N. Ponomarev, Russ. J. Phys. Chem. B 10, 820 (2016).

    Article  CAS  Google Scholar 

  12. E. F. Abdrashitov, D. A. Kritskaya, V. C. Bokun, et al., Solid State Ionics 286, 135 (2016).

    Article  CAS  Google Scholar 

  13. E. A. Sinevich, I. V. Bykova, S. N. Chvalun, and N. F. Bakeev, Polym. Sci., Ser. A 39, 1222 (1997).

    Google Scholar 

  14. G. K. Elyashevich, I. S. Kuryndin, V. K. Lavrentyev, et al., Phys. Solid State 54, 1907 (2012).

    Article  CAS  Google Scholar 

  15. D. V. Novikov, I. S. Kuryndin, and G. K. Elyashevich, Phys. Solid State 57, 1028 (2015).

    Article  CAS  Google Scholar 

  16. A. L. Volynskii, E. M. Ukolova, E. A. Shmatok, et al., Dokl. Akad. Nauk SSSR 310, 380 (1990).

    CAS  Google Scholar 

  17. A. L. Volynskii, E. A. Shmatok, E. M. Ukolova, et al., Vysokomol. Soedin., Ser. A 33, 1004 (1991).

    CAS  Google Scholar 

  18. S. V. Timofeev, L. P. Bobrova, E. I. Terutskii, et al., Al’tern. Energ. Ekol., No. 2, 128 (2007).

    Google Scholar 

  19. L. M. Yarysheva, L. Yu. Pazukhina, G. M. Lukovkin, et al., Vysokomol. Soedin., Ser. A 24, 2149 (1982).

    CAS  Google Scholar 

  20. L. M. Yarysheva, L. Yu. Pazukhina, N. M. Kabanov, et al., Vysokomol. Soedin., Ser. A 26, 388 (1984).

    CAS  Google Scholar 

  21. G. M. Lukovkin, L. Yu. Pazukhina, L. M. Yarysheva, et al., Vysokomol. Soedin., Ser. A 28, 189 (1986).

    CAS  Google Scholar 

  22. A. L. Volynskii, O. V. Kozlova, and N. F. Bakeev, Vysokomol. Soedin., Ser. A 28, 2230 (1986).

    CAS  Google Scholar 

  23. E. A. Sinevich, M. S. Arzhakov, M. A. Krykin, et al., Vysokomol. Soedin., Ser. A 30, 969 (1988).

    CAS  Google Scholar 

  24. M. P. Rodgers, Z. Shi, and S. Holdcroft, J. Membr. Sci. 325, 346 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Kritskaya.

Additional information

Original Russian Text © D.A. Kritskaya, E.F. Abdrashitov, V.Ch. Bokun, A.N. Ponomarev, 2018, published in Membrany i Membrannye Tekhnologii, 2018, Vol. 8, No. 2, pp. 107–115.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kritskaya, D.A., Abdrashitov, E.F., Bokun, V.C. et al. A Study of Pore Formation and Methanol Vapor Permeability in Stretched Polytetrafluoroethylene Films Used as a Precursor of Composite Ion-Exchange Membranes. Pet. Chem. 58, 309–316 (2018). https://doi.org/10.1134/S0965544118040059

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544118040059

Keywords

Navigation