Skip to main content
Log in

Mathematical Modeling of Ion Transport and Water Dissociation at the Ion-Exchange Membrane/Solution Interface in Intense Current Regimes

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

At current densities exceeding the limiting current density, H+ and OH ions are generated at the interface of the ion-exchange membrane with a depleted solution as a result of the dissociation of water molecules. At present, it is generally accepted that water splitting occurs in a thin (a few nanometers) layer inside the membrane, this reaction being catalytic in nature. The mathematical model of ion transport in the diffusion layer near the membrane surface has been constructed and numerically studied under conditions when dissociation and recombination processes involving water molecules and H+ and OH ions occur simultaneously. It has been shown that in overlimiting current regimes under very high voltages, intense noncatalytic dissociation of water molecules in the extended space charge region of the depleted solution can occur irrespective of the catalytic splitting of water. Since this region has macroscopic dimensions, the rate of noncatalytic water dissociation is comparable with the rate of the corresponding catalytic process. The obtained results significantly supplement modern concepts of the mechanism of generation of H+ and OH ions in membrane systems, showing that this process can proceed not only in accordance with the conventional mechanism with the catalytic participation of functional groups and/or other compounds, but also via the noncatalytic mechanism that has not been taken into account to the present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. O. Chubyr’, A. V. Kovalenko, and M. Kh. Urtenov, Two-Dimensional Mathematical Models of Binary-Electrolyte Transport in Membrane Systems (KGTU, Krasnodar, 2012) [in Russian].

    Google Scholar 

  2. V. J. Frilette, J. Phys. Chem. 60, 435 (1956).

    Article  CAS  Google Scholar 

  3. T. R. E. Kressman and F. L. Tye, Discuss. Faraday Soc. 21, 185 (1956).

    Article  Google Scholar 

  4. N. W. Rosenberg and C. E. Tirrell, Ind. Eng. Chem. 49, 780 (1957).

    Article  CAS  Google Scholar 

  5. B. A. Cooke, Electrochim. Acta 4, 179 (1961).

    Article  CAS  Google Scholar 

  6. H. P. Gregor and M. A. Peterson, J. Phys. Chem. 68, 2201 (1964).

    Article  CAS  Google Scholar 

  7. M. Block and J. A. Kitchener, J. Electrochem. Soc. 113, 947 (1966).

    Article  CAS  Google Scholar 

  8. Y. Oda and T. Yawataya, Desalination 5, 129 (1968).

    Article  CAS  Google Scholar 

  9. K. S. Spiegler, J. Leibovitz, and J. Sinkovic, Pontificiae 40, 727 (1976).

    CAS  Google Scholar 

  10. V. P. Greben, N. Y. Pivovarov, N. Y. Kovarskii, and G. V. Nefedova, Sov. J. Phys. Chem 52, 2641 (1978).

    CAS  Google Scholar 

  11. R. Simons, Desalination 28, 41 (1979).

    Article  CAS  Google Scholar 

  12. R. Simons, Nature 280, 824 (1979).

    Article  CAS  Google Scholar 

  13. R. Simons, Electrochim. Acta 29, 151 (1984).

    Article  CAS  Google Scholar 

  14. V. I. Zabolotskii, N. V. Shel’deshov, and N. P. Gnusin, Russ. Chem. Rev. 57, 801 (1988).

    Article  Google Scholar 

  15. V. I. Zabolotskii and V. V. Nikonenko, Ion Transport in Membranes (Nauka, Moscow, 1996) [in Russian].

    Google Scholar 

  16. V. I. Zabolotskii, V. V. Nikonenko, N. M. Korzhenko, et al., Russ. J. Electrochem. 38, 810 (2002).

    Article  CAS  Google Scholar 

  17. V. I. Zabolotskii, K. A. Lebedev, and N. V. Shel’-deshov, Nauchn. Zh. KubGAU, No. 124, 210 (2016).

    Google Scholar 

  18. A. V. Kovalenko, M. Kh. Urtenov, N. M. Seidova, and A. V. Pis’menskii, Nauchn. Zh. KubGAU, No. 121, 1929 (2016).

    Google Scholar 

  19. I. Ruhinstein and L. Shtilman, J. Chem. Soc., Faraday Trans. 2 75, 231 (1979).

    Article  Google Scholar 

  20. M. Kh. Urtenov, E. V. Kirillova, N. M. Seidova, and V. V. Nikonenko, J. Phys. Chem. 111, 14208 (2007).

    Article  CAS  Google Scholar 

  21. A. V. Sokirko and Yu. I. Kharkats, Elektrokhimiya 25, 232 (1989).

    CAS  Google Scholar 

  22. N. D. Pismenskaya, V. V. Nikonenko, E. I. Belova, et al., Russ. J. Electrochem. 43, 307 (2007).

    Article  CAS  Google Scholar 

  23. N. V. Sheldeshov, V. I. Zabolotskii, A. V. Bespalov, et al., Pet. Chem. 57, 518 (2017).

    Article  CAS  Google Scholar 

  24. A. V. Kovalenko, A. M. Uzdenova, M. Kh. Urtenov, and V. V. Nikonenko, Mathematical Modeling of Physicochemical Processes in the Comsol Multiphysics 5.2 Environment (Lan’, St. Petersburg, 2017) [in Russian].

    Google Scholar 

  25. V. I. Zabolotskii, L. Novak, A. V. Kovalenko, et al., Pet. Chem. 57, 779 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kh. Urtenov.

Additional information

Original Russian Text © M.Kh. Urtenov, A.V. Pismensky, V.V. Nikonenko, A.V. Kovalenko, 2018, published in Membrany i Membrannye Tekhnologii, 2018, Vol. 8, No. 1, pp. 24–33.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urtenov, M.K., Pismensky, A.V., Nikonenko, V.V. et al. Mathematical Modeling of Ion Transport and Water Dissociation at the Ion-Exchange Membrane/Solution Interface in Intense Current Regimes. Pet. Chem. 58, 121–129 (2018). https://doi.org/10.1134/S0965544118020056

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544118020056

Keywords

Navigation