Skip to main content
Log in

Enhancement of the Fischer–Tropsch process for producing long-chain hydrocarbons on a cobalt–alumina–silica gel catalyst

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The effects of the H2/CO ratio, pressure, temperature, and the reaction-gas recycle ratio on the selectivity for hydrocarbons (HCs), including long-chain C35+ HCs, in the Fischer–Tropsch synthesis over a supported industrial cobalt–silica gel catalyst have been studied. The synthesis parameters have been as follows: a pressure of 2.0 or 6.0 MPa, an H2/CO ratio of 1–5, a recycle ratio of 2–6, a temperature of 150–240°C, and a gas hourly space velocity of 1000 h−1. It has been shown that gas recycling provides thermal stability in the catalyst bed, significantly increases the yield of C35+ HCs, and makes it possible to control the group and fractional composition of the synthesis products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Hanaoka, T. Miyazawa, K. Shimura, and S. Hirata, Chem. Eng. J. 263, 178 (2015).

    Article  CAS  Google Scholar 

  2. C. Bouchy, G. Hastoy, E. Guillon, and J. A. Martens, Oil Gas Sci. Technol. 64, 91 (2009).

    Article  CAS  Google Scholar 

  3. www.shell.com/about-us/major-projects/pearlgtl. html. Accessed July 29, 2017.

  4. M. Bekker, N. R. Louw, V. J. Jansen van Rensburg, and J. Potgiete, Int. J. Cosmet. Sci. 35, 99 (2013).

    Article  CAS  Google Scholar 

  5. www.sasolwax.com. Accessed March 1, 2017.

  6. R. E. Yakovenko, G. B. Narochnyi, V. G. Bakun, et al., Izv. Vyssh. Uchebn. Zaved. Sev.-Kavkaz. Reg., Tekhn. Nauki, No. 6, 92 (2014).

    Google Scholar 

  7. GOST (State Standard) 7658-74: Synthetic High-Melting Ceresin: Specifications (Izd. Standartov, Moscow, 2005).

  8. A. P. Savost’yanov, G. B. Narochnyi, R. E. Yakovenko, et al., Catal. Ind. 6, 212 (2014).

    Article  Google Scholar 

  9. A. L. Lapidus, E. Z. Golosman, and Yu. A. Strizhakova, Solid Fuel Chem. 43, 175 (2011).

    Article  Google Scholar 

  10. C. J. Weststrate, P. van Helden, and J. W. Niemantsverdriet, Catal. Today 275, 100 (2016).

    Article  CAS  Google Scholar 

  11. A. Y. Khodakov, Wei. Chu, and P. Fongarland, Chem. Rev. 107, 1692 (2007).

    Article  CAS  Google Scholar 

  12. D. Pena, A. Griboval-Constant, V. Lecocq, et al., Catal. Today 215, 43 (2013).

    Article  CAS  Google Scholar 

  13. B. Todic, L. Nowicki, N. Nikacevic, and D. B. Bukur, Catal. Today 261, 28 (2016).

    Article  CAS  Google Scholar 

  14. X. Peng, K. Cheng, J. Kang, et al., Angew. Chem. 127, 4636 (2015).

    Article  Google Scholar 

  15. A. P. Savost’yanov, G. B. Narochnyi, R. E. Yakovenko, et al., Catal. Ind. 6, 292 (2014).

    Article  Google Scholar 

  16. G. B. Narochnyi, A. P. Savost’yanov, R. E. Yakovenko, and V. G. Bakun, Catal. Ind. 8, 139 (2016).

    Article  Google Scholar 

  17. A. P. Savost’yanov, R. E. Yakovenko, S. I. Sulima, et al., Catal. Today 279, 107 (2017).

    Article  Google Scholar 

  18. Studies in Surface Science and Catalysis, Ed. by A. P. Steynberg and M. E. Dry (Elsevier, Amsterdam, 2004), vol 152.

  19. E. Rytter, N. E. Tsakoumis, and A. Holmen, Catal. Today 261, 3 (2016).

    Article  CAS  Google Scholar 

  20. A. Dinse, M. Aigner, M. Ulbrich, et al., J. Catal. 288, 104 (2012).

    Article  CAS  Google Scholar 

  21. R. E. Yakovenko, G. B. Narochnyi, A. P. Savost’yanov, and V. A. Kirsanov, Chem. Pet. Eng. 51, 159 (2015).

    Article  CAS  Google Scholar 

  22. I. V. Derevich, High Temp. 45, 531 (2007).

    Article  CAS  Google Scholar 

  23. F. G. Botes, J. W. Niemantsverdriet, and J. van de Loosdrecht, Catal. Today 215, 112 (2013).

    Article  CAS  Google Scholar 

  24. E. Iglesia, Stud. Surf. Sci. Catal. 107, 53 (1997).

    Google Scholar 

  25. S. Storsæter, Ø. Borg, E. A. Blekkan, and A. Holmen, J. Catal. 231, 405 (2005).

    Article  Google Scholar 

  26. S. Storsæter, Ø. Borg, E. A. Blekkan, et al., Catal. Today 100, 343 (2005).

    Article  Google Scholar 

  27. Ø. Borg, Z. Yu, D. Chen, et al., Top. Catal. 57, 491 (2014).

    Article  CAS  Google Scholar 

  28. V. Frøseth, S. Storsæter, Ø. Borg, et al., Appl. Catal., A 289, 10 (2005).

    Article  Google Scholar 

  29. D. D. Hibbitts, B. T. Loveless, M. Neurock, and E. Iglesia, Angew. Chem., Int. Ed. Engl. 52, 12273 (2013).

    Article  CAS  Google Scholar 

  30. E. Iglesia, S. L. Soled, R. A, Fiato, and G. H. Via, J. Catal. 143, 345 (1993).

    Article  CAS  Google Scholar 

  31. C. N. Satterfield, Mass Transfer In Heterogeneous Catalysis (Massachusetts Institute of Technology Press, Cambridge, Mass. 1970).

    Google Scholar 

  32. I. C. Yates and C. N. Satterfield, Energy Fuels 5, 168 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. E. Yakovenko.

Additional information

Original Russian Text © A.P. Savost’yanov, G.B. Narochnyi, R.E. Yakovenko, S.A. Mitchenko, I.N. Zubkov, 2018, published in Neftekhimiya, 2018, Vol. 58, No. 1, pp. 80–89.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savost’yanov, A.P., Narochnyi, G.B., Yakovenko, R.E. et al. Enhancement of the Fischer–Tropsch process for producing long-chain hydrocarbons on a cobalt–alumina–silica gel catalyst. Pet. Chem. 58, 76–84 (2018). https://doi.org/10.1134/S0965544118010139

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544118010139

Keywords

Navigation