Skip to main content
Log in

Sustainable Oxidative Cleavage of Vegetable Oils into Diacids by Organo-Modified Molybdenum Oxide Heterogeneous Catalysts

  • Original Paper
  • Published:
Journal of the American Oil Chemists' Society

Abstract

Exploiting vegetable oils to produce industrially valuable diacids via an eco-friendly process requires an efficient and recyclable catalyst. In this work, a novel catalytic system based on organo-modified molybdenum trioxide was synthesized by a green hydrothermal method in one simple step, using Mo powder as precursor, hydrogen peroxide, and amphiphilic surfactants cetyltrimethylammonium bromide (CTAB) and tetramethylammonium bromide (TMAB) as capping agents. The synthesized materials were first characterized by different techniques including XRD, SEM, TGA, and FT-IR. Interestingly, various morphologies were obtained depending on the nature of the surfactants and synthetic conditions. The synthesized catalysts were employed in oxidative cleavage of oleic acid, the most abundant unsaturated fatty acid, to produce azelaic and pelargonic acids with a benign oxidant, H2O2. Excellent catalytic activities resulting in full conversion of initial oleic acid were obtained, particularly for CTAB-capped molybdenum oxide (CTAB/Mo molar ratio of 1:3) that gave 83 and 68% yields of production of azelaic and pelargonic acids, respectively. These are the highest yields that have been obtained for this reaction by heterogeneous catalysts up to now. Moreover, the CTAB-capped catalyst could be conveniently separated from the reaction mixture by simple centrifugation and reused without significant loss of activity up to at least four cycles.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rhead MM, Eglinton G, Draffan GH, England PJ (1971) Conversion of oleic acid to saturated fatty acids in Severn estuary sediments. Nature 232(5309):327–330

    Article  CAS  Google Scholar 

  2. Godard A, De Caro P, Thiebaud-Roux S, Vedrenne E, Mouloungui Z (2013) New environmentally friendly oxidative scission of oleic acid into azelaic acid and pelargonic acid. J Am Oil Chem Soc 90(1):133–140. doi:10.1007/s11746-012-2134-7

    Article  CAS  Google Scholar 

  3. Köckritz A, Blumenstein M, Martin A (2010) Catalytic cleavage of methyl oleate or oleic acid. Eur J Lipid Sci Technol 112(1):58–63. doi:10.1002/ejlt.200900103

    Article  Google Scholar 

  4. Kulik A, Janz A, Pohl M-M, Martin A, Köckritz A (2012) Gold-catalyzed synthesis of dicarboxylic and monocarboxylic acids. Eur J Lipid Sci Technol 114(11):1327–1332. doi:10.1002/ejlt.201200027

    Article  CAS  Google Scholar 

  5. Noureddini H, Rempe ML (1996) Pelargonic acid in enhanced oil recovery. J Am Oil Chem Soc 73(7):939–941. doi:10.1007/bf02517999

    Article  CAS  Google Scholar 

  6. Turnwald SE, Lorier MA, Wright LJ, Mucalo MR (1998) Oleic acid oxidation using hydrogen peroxide in conjunction with transition metal catalysis. J Mater Sci Lett 17(15):1305–1307. doi:10.1023/a:1006532314593

    Article  CAS  Google Scholar 

  7. Enferadi Kerenkan A, Beland F, Do T-O (2016) Chemically catalyzed oxidative cleavage of unsaturated fatty acids and their derivatives into valuable products for industrial applications: a review and perspective. Catal Sci Technol 6(4):971–987. doi:10.1039/C5CY01118C

    Article  CAS  Google Scholar 

  8. Spannring P, Bruijnincx PCA, Weckhuysen BM, Klein Gebbink RJM (2014) Transition metal-catalyzed oxidative double bond cleavage of simple and bio-derived alkenes and unsaturated fatty acids. Catal Sci Technol 4(8):2182–2209. doi:10.1039/C3CY01095C

    Article  CAS  Google Scholar 

  9. Dapurkar SE, Kawanami H, Yokoyama T, Ikushima Y (2009) Catalytic oxidation of oleic acid in supercritical carbon dioxide media with molecular oxygen. Top Catal 52(6):707–713. doi:10.1007/s11244-009-9212-6

    Article  CAS  Google Scholar 

  10. Sparks DL, Antonio Estevez L, Hernandez R (2009) Supercritical-fluid-assisted oxidation of oleic acid with ozone and potassium permanganate. Green Chem 11(7):986–993. doi:10.1039/B816515G

    Article  CAS  Google Scholar 

  11. Rup S, Sindt M, Oget N (2010) Catalytic oxidative cleavage of olefins by RuO4 organic solvent-free under ultrasonic irradiation. Tetrahedron Lett 51(23):3123–3126. doi:10.1016/j.tetlet.2010.04.040

    Article  CAS  Google Scholar 

  12. Rup S, Zimmermann F, Meux E, Schneider M, Sindt M, Oget N (2009) The ultrasound-assisted oxidative scission of monoenic fatty acids by ruthenium tetroxide catalysis: influence of the mixture of solvents. Ultrason Sonochem 16(2):266–272. doi:10.1016/j.ultsonch.2008.08.003

    Article  CAS  Google Scholar 

  13. Dai B, Wu P, Zhu W, Chao Y, Sun J, Xiong J, Jiang W, Li H (2016) Heterogenization of homogenous oxidative desulfurization reaction on graphene-like boron nitride with a peroxomolybdate ionic liquid. RSC Adv 6(1):140–147. doi:10.1039/C5RA23272D

    Article  CAS  Google Scholar 

  14. Du D-Y, Qin J-S, Li S-L, Su Z-M, Lan Y-Q (2014) Recent advances in porous polyoxometalate-based metal-organic framework materials. Chem Soc Rev 43(13):4615–4632. doi:10.1039/C3CS60404G

    Article  CAS  Google Scholar 

  15. Song Y-F, Tsunashima R (2012) Recent advances on polyoxometalate-based molecular and composite materials. Chem Soc Rev 41(22):7384–7402. doi:10.1039/C2CS35143A

    Article  CAS  Google Scholar 

  16. Zhou Y, Chen G, Long Z, Wang J (2014) Recent advances in polyoxometalate-based heterogeneous catalytic materials for liquid-phase organic transformations. RSC Adv 4(79):42092–42113. doi:10.1039/C4RA05175K

    Article  CAS  Google Scholar 

  17. Benessere V, Cucciolito ME, De Santis A, Di Serio M, Esposito R, Ruffo F, Turco R (2015) Sustainable process for production of azelaic acid through oxidative cleavage of oleic acid. J Am Oil Chem Soc 92(11):1701–1707. doi:10.1007/s11746-015-2727-z

    Article  CAS  Google Scholar 

  18. Chandra P, Doke DS, Umbarkar SB, Biradar AV (2014) One-pot synthesis of ultrasmall MoO3 nanoparticles supported on SiO2, TiO2, and ZrO2 nanospheres: an efficient epoxidation catalyst. J Mater Chem A 2(44):19060–19066. doi:10.1039/C4TA03754E

    Article  CAS  Google Scholar 

  19. Li Z, Li Y, Zhan E, Ta N, Shen W (2013) Morphology-controlled synthesis of [small alpha]-MoO3 nanomaterials for ethanol oxidation. J Mater Chem A 1(48):15370–15376. doi:10.1039/C3TA13402D

    Article  CAS  Google Scholar 

  20. Ma Z, Wu Y, He Y, Wu T (2013) A novel protocol for the oxidative degradation of chitosan with hydrogen peroxide catalyzed by peroxomolybdate in aqueous solution. RSC Adv 3(30):12049–12051. doi:10.1039/C3RA40424B

    Article  CAS  Google Scholar 

  21. Metcalfe LD, Schmitz AA (1961) The rapid preparation of fatty acid esters for gas chromatographic analysis. Anal Chem 33(3):363–364. doi:10.1021/ac60171a016

    Article  CAS  Google Scholar 

  22. Metcalfe LD, Schmitz AA, Pelka JR (1966) Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis. Anal Chem 38(3):514–515. doi:10.1021/ac60235a044

    Article  CAS  Google Scholar 

  23. Song R-Q, Xu A-W, Deng B, Fang Y-P (2005) Novel multilamellar mesostructured molybdenum oxide nanofibers and nanobelts: synthesis and characterization. J Phys Chem B 109(48):22758–22766. doi:10.1021/jp0533325

    Article  CAS  Google Scholar 

  24. Wang S, Zhang Y, Ma X, Wang W, Li X, Zhang Z, Qian Y (2005) Hydrothermal route to single crystalline α-MoO3 nanobelts and hierarchical structures. Solid State Commun 136(5):283–287. doi:10.1016/j.ssc.2005.08.002

    Article  CAS  Google Scholar 

  25. Gong J, Zeng W, Zhang H (2015) Hydrothermal synthesis of controlled morphologies of MoO3 nanobelts and hierarchical structures. Mater Lett 154:170–172. doi:10.1016/j.matlet.2015.04.092

    Article  CAS  Google Scholar 

  26. Li Y, Liu T, Li T, Peng X (2015) Hydrothermal fabrication of controlled morphologies of MoO3 with CTAB: structure and growth. Mater Lett 140:48–50. doi:10.1016/j.matlet.2014.10.153

    Article  CAS  Google Scholar 

  27. Chithambararaj A, Chandra Bose A (2014) Role of synthesis variables on controlled nucleation and growth of hexagonal molybdenum oxide nanocrystals: investigation on thermal and optical properties. CrystEngComm 16(27):6175–6186. doi:10.1039/C4CE00418C

    Article  CAS  Google Scholar 

  28. Chithambararaj A, Sanjini NS, Bose AC, Velmathi S (2013) Flower-like hierarchical h-MoO3: new findings of efficient visible light driven nano photocatalyst for methylene blue degradation. Catal Sci Technol 3(5):1405–1414. doi:10.1039/C3CY20764A

    Article  CAS  Google Scholar 

  29. Chithambararaj A, Bose AC (2011) Hydrothermal synthesis of hexagonal and orthorhombic MoO3 nanoparticles. J Alloy Compd 509(31):8105–8110. doi:10.1016/j.jallcom.2011.05.067

    Article  CAS  Google Scholar 

  30. Masteri-Farahani M, Mahdavi S, Rafizadeh M (2013) Microemulsion-mediated synthesis and characterization of monodispersed nickel molybdate nanocrystals. Ceram Int 39(4):4619–4625. doi:10.1016/j.ceramint.2012.11.059

    Article  CAS  Google Scholar 

  31. Mao Y, Li W, Sun X, Ma Y, Xia J, Zhao Y, Lu X, Gan J, Liu Z, Chen J, Liu P, Tong Y (2012) Room-temperature ferromagnetism in hierarchically branched MoO3 nanostructures. CrystEngComm 14(4):1419–1424. doi:10.1039/C1CE05700F

    Article  CAS  Google Scholar 

  32. Noureddini H, Kanabur M (1999) Liquid-phase catalytic oxidation of unsaturated fatty acids. J Am Oil Chem Soc 76(3):305–312. doi:10.1007/s11746-999-0236-7

    Article  CAS  Google Scholar 

  33. Enferadi Kerenkan A, Ello Aimé S, Echchahed B, Do T-O (2016) Synthesis of mesoporous tungsten oxide/γ-alumina and surfactant-capped tungsten oxide nanoparticles and their catalytic activities in oxidative cleavage of oleic acid. Int J Chem Reactor Eng 14(4):899–907

    Google Scholar 

Download references

Acknowledgements

ASE thanks the Department of Chemical Engineering at Laval University for welcoming him as a visiting scientist during his stay in Canada. The authors would like to thank the industrial partners (Oleotek and SiliCycle Inc.) for stimulating discussions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trong-On Do.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Funding

This study was funded by the "Programme Canadien de Bourses de la Francophonie” (PCBF) and the Nature Sciences and Engineering Research Council of Canada (NSERC) through an INNOV-UC grant.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 817 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ello, A.S., Enferadi-kerenkan, A., Trokourey, A. et al. Sustainable Oxidative Cleavage of Vegetable Oils into Diacids by Organo-Modified Molybdenum Oxide Heterogeneous Catalysts. J Am Oil Chem Soc 94, 1451–1461 (2017). https://doi.org/10.1007/s11746-017-3047-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-017-3047-2

Keywords

Navigation