Skip to main content

Efficient Steady Flow Computations with Exponential Multigrid Methods

  • Conference paper
  • First Online:
Numerical Geometry, Grid Generation and Scientific Computing

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 143))

Abstract

An exponential multigrid framework is developed and assessed with a modal high-order discontinuous Galerkin method in space. The algorithm based on a global coupling, exponential time integration scheme provides strong damping effects to accelerate the convergence towards the steady-state, while high-frequency, high-order spatial error modes are smoothed out with a s-stage preconditioned Runge-Kutta method. Numerical studies show that the exponential time integration substantially improves the damping and propagative efficiency of Runge-Kutta time-stepping for use with the p-multigrid method, yielding rapid and p-independent convergences to steady flows in both two and three dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, S.-J., Wang, Z.J., Ju, L., Luo, L.-S.: Explicit large time stepping with a second-order exponential time integrator scheme for unsteady and steady flows. In: 55th AIAA Aerospace Sciences Meeting, AIAA-2017-0753 (2017)

    Google Scholar 

  2. Li, S.-J., Wang, Z.J., Ju, L., Luo, L.-S.: Fast time integration of Navier-Stokes equations with an exponential-integrator scheme. In: 2018 AIAA Aerospace Sciences Meeting, AIAA-2018-0369 (2018)

    Google Scholar 

  3. Li, S.-J., Luo, L.-S., Wang, Z.J., Ju, L.: An exponential time-integrator scheme for steady and unsteady inviscid flows. J. Comput. Phys. 365, 206–225 (2018)

    Article  MathSciNet  Google Scholar 

  4. Li, S.-J.: Mesh curving and refinement based on cubic Bézier surface for High-order discontinuous Galerkin methods. Comput. Math. Math. Phys. 59(12), 2080–2092 (2019)

    Article  MathSciNet  Google Scholar 

  5. Li, S.-J., Ju, L., Si, H.: Adaptive exponential time integration of the Navier-Stokes equations. In: AIAA-2020-2033 (2020)

    Google Scholar 

  6. Caliari, M., Ostermann, A.: Implementation of exponential Rosenbrock-type integrators, Appl. Numer. Math. 59(3), 568–582 (2009)

    Article  MathSciNet  Google Scholar 

  7. Tokman, M., Loffeld, J.: Efficient design of exponential-Krylov integrators for large scale computing. Procedia Comput. Sci. 1(1), 229–237 (2010)

    Article  Google Scholar 

  8. Saad, Y.: Analysis of some Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 29(1), 209–228 (1992)

    Article  MathSciNet  Google Scholar 

  9. Moler, C.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM J. Numer. Anal. 45(1), 3–49 (2003)

    MathSciNet  MATH  Google Scholar 

  10. Pierce, N., Giles, M.: Preconditioning compressible flow calculations on stretched meshes. In: 34th Aerospace Sciences Meeting and Exhibit, AIAA-1996-889 (1996)

    Google Scholar 

  11. Toro, E.: Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, Berlin (1999)

    Book  Google Scholar 

  12. Roe, P.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43(2), 357–372 (1981)

    Article  MathSciNet  Google Scholar 

  13. Saad,Y., GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is funded by the National Natural Science Foundation of China (NSFC) under the Grant U1930402. The computational resources are provided by Beijing Computational Science Research Center (CSRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Jie Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, SJ. (2021). Efficient Steady Flow Computations with Exponential Multigrid Methods. In: Garanzha, V.A., Kamenski, L., Si, H. (eds) Numerical Geometry, Grid Generation and Scientific Computing. Lecture Notes in Computational Science and Engineering, vol 143. Springer, Cham. https://doi.org/10.1007/978-3-030-76798-3_24

Download citation

Publish with us

Policies and ethics