Skip to main content
Log in

Darwin Approximation for the System of Maxwell’s Equations in Inhomogeneous Conducting Media

  • PARTIAL DIFFERENTIAL EQUATIONS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A quasi-stationary Darwin approximation for the system of Maxwell’s equations in inhomogeneous conducting media is studied. An existence and uniqueness theorem for the initial-boundary value problem for the resulting system of differential equations is proved. Estimates of the proximity between the solutions of the quasi-stationary problem under consideration and the corresponding nonstationary problem, depending on the characteristic values of the data, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Fizmatlit, Moscow, 1982; Butterworth-Heinemann, Oxford, 1984).

  2. V. V. Tolmachev, A. M. Golovin, and V. S. Potapov, Thermodynamics and Electrodynamics of Continuous Media (Mosk. Gos. Univ., Moscow, 1988) [in Russian].

    Google Scholar 

  3. I. E. Tamm, Fundamentals of the Theory of Electricity (Mir, Moscow, 1979; Nauka, Moscow, 1989).

  4. C. G. Darwin, “The dynamical motions of charged particles,” Philos. Mag. 39 (233), 537–551 (1920).

    Article  Google Scholar 

  5. A. N. Kaufman and P. S. Rostler, “The Darwin model as a tool for electromagnetic plasma simulation,” Phys. Fluids 14 (2), 446–448 (1971).

    Article  Google Scholar 

  6. C. W. Nielson and H. R. Lewis, “Particle code models in the nonradiative limit,” Methods Comput. Phys. 16, 367–388 (1976).

    Google Scholar 

  7. D. W. Hewett and C. W. Nielson, “A multidimensional quasineutral plasma simulation model,” J. Comput. Phys. 29, 219–236 (1978).

    Article  Google Scholar 

  8. D. W. Hewett and J. K. Boyd, “Streamlined Darwin simulation of nonneutral plasmas,” J. Comput. Phys. 70, 166–181 (1987).

    Article  MathSciNet  Google Scholar 

  9. L. V. Borodachev, I. V. Mingalev, and O. V. Mingalev, “Algorithm for simulating the drift motion of a particle in a plasma described by the Darwin model,” Comput. Math. Math. Phys. 43 (3), 446–458 (2003).

    MathSciNet  MATH  Google Scholar 

  10. P.-A. Raviart and E. Sonnendrücker, “A hierarchy of approximate models for the Maxwell equations,” Numer. Math. 73, 329–372 (1996).

    Article  MathSciNet  Google Scholar 

  11. J. Larsson, “Electromagnetics from a quasistatic perspective,” Am. J. Phys. 75 (3), 230–239 (2007).

    Article  Google Scholar 

  12. S. Kawashima and Y. Shizuta, “Magnetohydrodynamic approximation of the complete equations for an electromagnetic fluid II,” Proc. Jpn. Acad. Ser. A 62 (5), 181–184 (1986).

  13. H. Ammari, A. Buffa, and J.-C. Nedelec, “A justification of eddy currents model for the Maxwell equations,” SIAM J. Appl. Math. 60 (5), 1805–1823 (2000).

    Article  MathSciNet  Google Scholar 

  14. A. Alonso Rodriguez and A. Valli, Eddy Current Approximation of Maxwell Equations: Theory, Algorithms, and Applications (Springer-Verlag, Milan, Italia, 2010).

    Book  Google Scholar 

  15. M. P. Galanin and Yu. P. Popov, Quasi-stationary Electromagnetic Fields in Inhomogeneous Media (Fizmatlit, Moscow, 1995) [in Russian].

    MATH  Google Scholar 

  16. A. Bossavit, “The computation of eddy-currents, in dimension 3, by using mixed finite elements and boundary elements in association,” Math. Comput. Model. 15 (305), 33–42 (1991).

    Article  MathSciNet  Google Scholar 

  17. P. Fernandes, “General approach to prove the existence and uniqueness of the solution in vector potential formulations of 3-D eddy current problems,” IEE Proc.-Sci. Meas. Technol. 142, 299–306 (1995).

    Article  Google Scholar 

  18. M. Kolmbauer, “Existence and uniqueness of eddy current problems in bounded and unbounded domains,” Numa-Report 2011-03 (Institute of Computational Mathematics, Linz, 2011). www.numa.uni-linz.ac.at/Publications/List/2011/011-03.pdf

    Google Scholar 

  19. J. Camano and R. Rodriguez, “Analysis of a FEM-BEM model posed on the conducting domain for the time-dependent eddy current problem,” J. Comput. Appl. Math. 236, 3084–3100 (2012).

    Article  MathSciNet  Google Scholar 

  20. A. V. Kalinin and A. A. Kalinkina, “Quasi-stationary initial–boundary value problems for Maxwell’s equations,” Vestn. Nizhegorod. Gos. Univ. Mat. Model. Optim. Upr. 26 (1), 21–38 (2003).

    Google Scholar 

  21. A. V. Kalinin, M. I. Sumin, and A. A. Tyukhtina, “Stable sequential Lagrange principles in the inverse final observation problem for the system of Maxwell equations in the quasistationary magnetic approximation,” Differ. Equations 52 (5), 587–603 (2016).

    Article  MathSciNet  Google Scholar 

  22. A. V. Kalinin and A. A. Tyukhtina, “Quasi-stationary electromagnetic fields in inhomogeneous media with non-conductive and low conductive inclusions,” Zh. Srednevolzh. Mat. O–va 18 (4), 119–133 (2016).

    Google Scholar 

  23. A. V. Kalinin, M. I. Sumin, and A. A. Tyukhtina, “Inverse final observation problems for Maxwell’s equations in the quasi-stationary magnetic approximation and stable sequential Lagrange principles for their solving,” Comput. Math. Math. Phys. 57 (2), 189–210 (2017).

    Article  MathSciNet  Google Scholar 

  24. A. V. Kalinin, A. A. Tyukhtina, and O. A. Izosimova, “Modified gauge conditions for Maxwell equations in quasi-stationary magnetic approximation,” Zh. Srednevolzh. Mat. O–va 19 (4), 55–67 (2017).

    MATH  Google Scholar 

  25. A. V. Kalinin and A. A. Tyukhtina, “Lp-estimates for scalar products of vector fields and their application to electromagnetic theory problems,” Math. Methods Appl. Sci. 41 (18), 9283–9292 (2018).

    Article  MathSciNet  Google Scholar 

  26. A. A. Zhidkov and A. V. Kalinin, “The well-posedness of a mathematical problem of atmospheric electricity,” Vestn. Nizhegorod. Univ. im. N.I. Lobachevskogo, No. 4, 123–129 (2009).

    Google Scholar 

  27. E. A. Mareev, “Global electric circuit research: Achievements and prospects,” Phys. Usp. 53 (5), 504–511 (2010).

    Article  Google Scholar 

  28. A. V. Kalinin, N. N. Slyunyaev, E. A. Mareev, and A. A. Zhidkov, “Stationary and nonstationary models of the global electric circuit: Well-posedness, analytical relations, and numerical implementation,” Izv. Atm. Ocean. Phys. 50 (3), 314–322 (2014).

    Article  Google Scholar 

  29. A. V. Kalinin and N. N. Slyunyaev, “Initial-boundary value problems for the equations of the global atmospheric electric circuit,” J. Math. Anal. Appl. 450 (1), 112–136 (2017).

    Article  MathSciNet  Google Scholar 

  30. R. Boström and U. Fahleson, “Vertical propagation of time-dependent electric fields in the atmosphere and ionosphere,” in Electrical Processes in Atmospheres, Ed. by H. Dolezalek and R. Reiter (Steinkopff, 1977), pp. 529–535.

    Google Scholar 

  31. V. Morozov and G. Kupovykh, Theory of Electrical Phenomena in the Atmosphere: Mathematical Modeling of Atmospheric Electrical Processes (LAP LAMBERT Academic, Germany, 2012).

    Google Scholar 

  32. H. Weitzner and W. S. Lawson, “Boundary conditions for the Darwin model,” Phys. Fluids B 1, 1953–1957 (1989).

    Article  MathSciNet  Google Scholar 

  33. P. Degond and P.-A. Raviart, “An analysis of the Darwin model of approximation to Maxwell’s equations,” Forum Math. 4, 13–44 (1992).

    Article  MathSciNet  Google Scholar 

  34. P.-A. Raviart and E. Sonnendrücker, “Approximate models for the Maxwell equations,” J. Comput. Appl. Math. 63, 69–81 (1994).

    Article  MathSciNet  Google Scholar 

  35. R. Temam, Navier–Stokes Equations: Theory and Numerical Analysis (North-Holland, Amsterdam, 1979).

    MATH  Google Scholar 

  36. V. Girault and P. Raviart, Finite Element Methods for Navier–Stokes Equations (Springer-Verlag, New York, 1986).

    Book  Google Scholar 

  37. G. Duvaut and J.-L. Lions, Inequalities in Mechanics and Physics (Springer-Verlag, Berlin, 1976).

    Book  Google Scholar 

Download references

Funding

This work was supported by a grant from the Russian Science Foundation, project no. 18-77-10061.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Kalinin or A. A. Tyukhtina.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinin, A.V., Tyukhtina, A.A. Darwin Approximation for the System of Maxwell’s Equations in Inhomogeneous Conducting Media. Comput. Math. and Math. Phys. 60, 1361–1374 (2020). https://doi.org/10.1134/S0965542520080102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542520080102

Keywords:

Navigation