Skip to main content
Log in

Electrostatic Fields in Some Special Inhomogeneous Media and New Generalizations of the Cauchy–Riemann System

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

This paper extends approach of our recent paper together with Kähler to building special classes of exact solutions of the static Maxwell system in inhomogeneous isotropic media by means of different generalizations of the Cauchy–Riemann system with variable coefficients. A new class of three-dimensional solutions of the static Maxwell system in some special cylindrically layered media is obtained using class of exact solutions of the elliptic Euler–Poisson–Darboux equation in cylindrical coordinates. The principal invariants of the electric field gradient tensor within a wide range of meridional fields are described using a family of Vekua type systems in cylindrical coordinates. Analytic models of meridional electrostatic fields in accordance with different generalizations of the Cauchy–Riemann system with variable coefficients allow us to introduce the concept of \(\alpha \)-meridional mappings of the first and second kind depending on the values of a real parameter \(\alpha \). In particular, in case \(\alpha =0\), geometric properties of harmonic meridional mappings of the second kind are demonstrated explicitly within meridional fields in homogeneous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlfors, L.V.: Möbius Transformations in Several Dimensions. Ordway Lectures in Mathematics. University of Minnesota, Minneapolis (1981)

    MATH  Google Scholar 

  2. Aksenov, A.V.: Linear differential relations between solutions of the class of Euler–Poisson–Darboux equations. J. Math. Sci. 130(5), 4911–4940 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aksenov, A.V.: A class of exact solutions of the axisymmetric Laplace–Beltrami equation [in Russian]. Differ. Equ. 53(11), 1571–1572 (2017)

    Google Scholar 

  4. Arnold, V.I.: Geometrical Methods in the Theory of Ordinary Differential Equations. Grundlehren der mathematischen Wissenschaften, vol. 250, 2nd edn. Springer, New York (1988)

    Book  Google Scholar 

  5. Born, M., Wolf, E.: Principles of Optics, 7th edn. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  6. Brackx, F., Delanghe, R.: On harmonic potential fields and the structure of monogenic functions. Z. Anal. Anwend. 22(2), 261–273 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bryukhov, D.A.: Axially symmetric generalization of the Cauchy-Riemann system and modified Clifford analysis (2003). arXiv:math.CV/0302186v1

  8. Bryukhov, D.: The independent and dependent reduced quaternionic variables in \(\mathbb{R}^3\) and some applications. In: Gürlebeck K. (ed.) Proc. of ICCA9, Bauhaus-Universität Weimar, Weimar (2011)

  9. Bryukhov, D.: Modified quaternionic analysis in \(\mathbb{R}^3\) and generalizations of conformal mappings of the second kind. In: Simos, T.E., Psihoyios, G., Tsitouras Ch. (eds.) ICNAAM 2011, Halkidiki, Greece, AIP Conf. Proc., vol. 1389, New York, pp. 248–251 (2011)

  10. Bryukhov, D., Kähler, U.: The static Maxwell system in three dimensional axially symmetric inhomogeneous media and axially symmetric generalization of the Cauchy–Riemann system. Adv. Appl. Clifford Algebras 27(2), 993–1005 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids, 2nd edn. Clarendon Press, Oxford (1959)

  12. Chew, W.C.: Waves and Fields in Inhomogeneous Media. Van Nostrand Reinhold, New York (1990)

  13. Colombo, F., Sabadini, I., Struppa, D.C.: Slice monogenic functions. Isr. J. Math. 171, 385–403 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Colombo, F., Sabadini, I., Struppa, D.C.: Entire Slice Regular Functions. SpringerBriefs in Mathematics. Springer, Berlin (2016)

    Book  MATH  Google Scholar 

  15. Cullen, C.G.: An integral theorem for analytic intrinsic functions on quaternions. Duke Math. J. 32, 139–148 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  16. Delanghe, R.: On homogeneous polynomial solutions of the Riesz system and their harmonic potentials. Complex Var. Elliptic Equ. 52(10–11), 1047–1062 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dinh, D.C., Tuyet, L.T.: Representation of Weinstein \(k\)-monogenic functions by differential operators. Complex Anal. Oper. Theory 14, 20 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dinh, D.C.: The existence of Cauchy kernels of Kravchenko-generalized Dirac operators. Adv. Appl. Clifford Algebras 31, 2 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dzhaiani, G.V.: The Euler–Poisson–Darboux Equation [in Russian]. Izd. Tbilisskogo Gos. Univ., Tbilisi (1984)

    Google Scholar 

  20. Erdélyi, A.: Singularities of generalized axially symmetric potentials. Commun. Pure Appl. Math. 9, 403–414 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  21. Eriksson, S.-L., Leutwiler, H.: Hyperbolic function theory. Adv. Appl. Clifford Algebras 17, 437–450 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Eriksson, S.-L., Orelma, H.: Hyperbolic Laplace operator and the Weinstein equation in \({\mathbb{R}}^3\). Adv. Appl. Clifford Algebras 24(1), 109–124 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Eriksson, S.-L., Orelma, H., Vieira, N.: Two-sided hypergenic functions. Adv. Appl. Clifford Algebras 27(1), 111–123 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Eriksson, S.-L., Orelma, H.: Hyperbolic function theory in the skew-field of quaternions. Adv. Appl. Clifford Algebras 29, 97 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Fueter, R.: Die funktionentheorie der differentialgleichungen \(\Delta u=0\) und \(\Delta \Delta u=0\) mit vier reellen variablen. Comment. Math. Helv. 7, 307–330 (1934/1935)

  26. Gentili, G., Struppa, D.C.: A new approach to Cullen-regular functions of a quaternionic variable. C. R. Acad. Sci. Paris 342, 741–744 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gilmore, R.: Catastrophe Theory for Scientists and Engineers. Dover Publications, New York (1993)

    MATH  Google Scholar 

  28. Gryshchuk, S.V., Plaksa, S.A.: Integral representations of generalized axially symmetric potentials in a simply connected domain. Ukr. Math. J. 61(2), 195–213 (2009)

    Article  Google Scholar 

  29. Gürlebeck, K., Habetha, K., Sprößig, W.: Holomorphic Functions in the Plane and \(n\)-Dimensional Space. Birkhäuser, Basel (2008)

    MATH  Google Scholar 

  30. Gürlebeck, K., Habetha, K., Sprößig, W.: Application of Holomorphic Functions in Two and Higher Dimensions. Birkhäuser, Basel (2016)

    Book  MATH  Google Scholar 

  31. Gürlebeck, K., Morais, J.: Geometric characterization of \(M\)-conformal mappings. In: Bayro-Corrochano E., Scheuermann G. (eds.) Geometric Algebra Computing, pp. 327–342. Springer, London (2010)

  32. Gürlebeck, K., Morais, J.: On orthonormal polynomial solutions of the Riesz system in \(\mathbb{R}^3\). In: Simos T.E. (ed.) Recent Advances in Computational and Applied Mathematics, pp. 143–158. Springer, Dordrecht (2011)

  33. Hempfling, Th., Leutwiler, H.: Modified quaternionic analysis in \({\mathbb{R}}^4\). In: Dietrich V., Habetha K., Jank G. (eds.) Clifford Algebras and Their Application in Mathematical Physics. Fundamental Theories of Physics, vol. 94, pp. 227–237. Kluwer, Dordrecht (1998)

  34. Hilbert, D., Cohn-Vossen, S.: Geometry and the Imagination, 2nd edn. AMS Chelsea Publishing, Providence (1999)

    MATH  Google Scholar 

  35. Khmelnytskaya, K.V., Kravchenko, V.V., Oviedo, H.: On the solution of the static Maxwell system in axially symmetric inhomogeneous media. Math. Methods Appl. Sci. 33(4), 439–447 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Kravchenko, V.G., Kravchenko, V.V.: Quaternionic factorization of the Schrödinger operator and its applications to some first order systems of mathematical physics. J. Phys. A Math. Gen. 36(44), 11285–11297 (2003)

    Article  ADS  MATH  Google Scholar 

  37. Kravchenko, V.V.: Applied Quaternionic Analysis. Research and Exposition in Mathematics, vol. 28. Heldermann, Lemgo (2003)

    MATH  Google Scholar 

  38. Kravchenko, V.V.: Applied Pseudoanalytic Function Theory. Frontiers in Mathematics. Birkhäuser, Basel (2009)

    Book  MATH  Google Scholar 

  39. Kravchenko, V.V., Tachiquin, M.P.R.: On a quaternionic reformulation of the Dirac equation and its relationship with Maxwell’s system. Bulletin de la Société des Sciences et des Lettres de Łódź 53. Série: Recherches sur les déformations 41, 101–114 (2003)

  40. Krivenkov, Yu.P.: On a representation of the solutions of the Euler–Poisson–Darboux equation [in Russian]. Dokl. Akad. Nauk SSSR 116(3), 351–354 (1957)

  41. Lavrentyev, M.A., Shabat, B.V.: Hydrodynamics Problems and Their Mathematical Models [in Russian]. Nauka, Moscow (1973)

    Google Scholar 

  42. Lavrentyev, M.A., Shabat, B.V.: Methods of the Theory of Functions of a Complex Variable [in Russian], 5th edn. Nauka, Moscow (1987)

    Google Scholar 

  43. Leutwiler, H.: Modified Clifford analysis. Complex Var. Theory Appl. 17, 153–171 (1992)

    MathSciNet  MATH  Google Scholar 

  44. Leutwiler, H.: Modified quaternionic analysis in \({\mathbb{R}}^3\). Complex Var. Theory Appl. 20, 19–51 (1992)

    MATH  MathSciNet  Google Scholar 

  45. Leutwiler, H.: Quaternionic analysis in \(\mathbb{R}^3\) versus its hyperbolic modification. In: Brackx, F., Chisholm, J.S.R., Soucek, V. (eds.) NATO Science Series II: Mathematics, Physics and Chemistry, vol. 25, pp. 193–211. Kluwer, Dordrecht (2001)

  46. Leutwiler, H., Zeilinger, P.: On quaternionic analysis and its modifications. Comput. Methods Funct. Theory 4(1), 159–183 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  47. Leutwiler, H.: An orthonormal system of modified spherical harmonics. Complex Anal. Oper. Theory 11(5), 1241–1251 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  48. Leutwiler, H.: More on modified spherical harmonics. Adv. Appl. Clifford Algebras 29, 70 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  49. Leutwiler,H.: Further results on modified harmonic functions in three dimensions. Math. Meth. Appl. Sci. 1–9 (2021). https://doi.org/10.1002/mma.7277

  50. Malonek, H.: Monogenic functions and \(M\)-conformal mappings. In: Brackx, F., Chisholm, J.S.R., Soucek, V. (eds.) NATO Science Series II: Mathematics, Physics and Chemistry, vol. 25, pp. 213–222. Kluwer, Dordrecht (2001)

  51. Mel’nichenko, I.P.: The representation of harmonic mappings by monogenic functions. Ukr. Math. J. 27(5), 499–505 (1975)

    Article  MathSciNet  Google Scholar 

  52. Mel’nichenko, I.P., Plaksa, S.A.: Potential fields with axial symmetry and algebras of monogenic functions of vector variable. III. Ukr. Math. J. 49(2), 253–268 (1997)

    Article  MATH  Google Scholar 

  53. Morais, J., Avetisyan, K., Gürlebeck, K.: On Riesz systems of harmonic conjugates in \({\mathbb{R}}^3\). Math. Methods Appl. Sci. 36(12), 1598–1614 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Peña Peña, D., Sommen, F.: Vekua-type systems related to two-sided monogenic functions. Complex Anal. Oper. Theory 6(2), 397–405 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  55. Peña Peña, D., Sabadini, I., Sommen, F.: On two-sided monogenic functions of axial type. Mosc. Math. J. 17(1), 129–143 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  56. Plaksa, S.A.: Dirichlet problem for an axisymmetric potential in a simply-connected domain of the meridian plane. Ukr. Math. J. 53(12), 1976–1997 (2001)

    Article  MATH  Google Scholar 

  57. Plaksa, S.A.: Dirichlet problem for the Stokes flow function in a simply-connected domain of the meridian plane. Ukr. Math. J. 55(2), 241–281 (2003)

    Article  Google Scholar 

  58. Pogorui, A., Shapiro, M.V.: On the structure of the set of zeros of quaternionic polynomials. Complex Var. 49(6), 379–389 (2004)

    MathSciNet  MATH  Google Scholar 

  59. Polozhii, G.N.: Theory and Application of \(p\)-Analytic and \((p, q)\)-Analytic Functions [in Russian], 2nd edn. Naukova Dumka, Kiev (1973)

    Google Scholar 

  60. Polyanin, A.D., Zaitsev, V.F.: Handbook of Exact Solutions for Ordinary Differential Equations, 2nd edn. Chapman and Hall/CRC Press, Boca Raton/London (2003)

    MATH  Google Scholar 

  61. Smirnov, V.I.: A Course of Higher Mathematics, Vol. II, Advanced Calculus. Pergamon Press, Oxford (1964)

  62. Sudbery, A.: Quaternionic analysis. Math. Proc. Camb. Philos. Soc. 85, 199–225 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  63. Tachiquin, M.P.R., Solares, A.G., Nava, V.D.S., Torres, O.R.: Study of the general solution for the two-dimensional electrical impedance equation. In: Ao S.-I., Gelman L. (eds.) Electronic Engineering and Computing Technology. Lecture Notes in Electrical Engineering, vol. 60, pp. 563–574. Springer, Dordrecht (2010)

  64. Topuridze, N.: On the roots of polynomials over division algebras. Georgian Math. J. 10(4), 745–762 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  65. Watson, G.N.: A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  66. Weinstein, A.: On axially symmetric flows. Q. Appl. Math. 5, 429–444 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  67. Weinstein, A.: Discontinuous integrals and generalized potential theory. Trans. Am. Math. Soc. 63(2), 342–354 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  68. Weinstein, A.: Generalized axially symmetric potential theory. Bull. Am. Math. Soc. 59(1), 20–38 (1953)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The system (1.9) was introduced and first characterized as generalized non-Euclidean modification of the system (R) with respect to the conformal metric (1.17) by Kähler together with the author at the University of Aveiro, November 2015. The author would like to thank Prof. Aksenov, Prof. Cerejeiras, Prof. Eriksson, Prof. Grigor’ev, Prof. Gürlebeck, Prof. Hitzer, Prof. Kähler, Dr. Kisil, Prof. Leutwiler, Prof. Plaksa, Prof. Sprössig for inspiring discussions. The author would like to thank the anonymous referees for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Bryukhov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings ICCA 12, Hefei, 2020, edited by Guangbin Ren, Uwe Kähler, Rafal Ablamowicz, Fabrizio Colombo, Pierre Dechant, Jacques Helmstetter, G. Stacey Staples, Wei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bryukhov, D. Electrostatic Fields in Some Special Inhomogeneous Media and New Generalizations of the Cauchy–Riemann System. Adv. Appl. Clifford Algebras 31, 61 (2021). https://doi.org/10.1007/s00006-021-01163-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00006-021-01163-2

Keywords

Mathematics Subject Classification

Navigation