Skip to main content
Log in

Experimental Studies of Difference Gas Dynamics Models with Shock Waves

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A linearized version of the classical Godunov scheme as applied to nonlinear discontinuity decays is described. It is experimentally shown that this version guarantees an entropy nondecrease, which makes it possible to simulate entropy growth on shock waves. The structure of shock waves after the discontinuity decays is studied. It is shown that the width of the shock waves and the time required for their formation depend on the choice of the Courant number. The accuracy of the discontinuous solutions is tested numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.
Fig. 28.
Fig. 29.
Fig. 30.
Fig. 31.
Fig. 32.

Similar content being viewed by others

REFERENCES

  1. S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, and G. P. Prokopov, Numerical Solution of Multidimensional Problems in Gas Dynamics (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  2. S. K. Godunov, “A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics,” Mat. Sb. 47 (3), 271–306 (1959).

    MathSciNet  MATH  Google Scholar 

  3. J. Neumann and R. Richtmyer, “A method for the numerical calculation of hydrodynamic shocks,” J. Appl. Phys. 21 (3), 232–237 (1950).

    Article  MathSciNet  MATH  Google Scholar 

  4. A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems (Fizmatlit, Moscow, 2001; Chapman and Hall/CRC, London, 2001).

  5. A. V. Safronov, “Kinetic interpretations of numerical schemes for gas dynamics equations,” Fiz.-Khim. Kinet. Gaz. Din., No. 8, 7 (2009).

  6. K. O. Friedrichs, “Symmetric hyperbolic linear differential equations,” Commun. Pure Appl. Math. 7, 345 (1954).

    Article  MathSciNet  MATH  Google Scholar 

  7. P. D. Lax, “Weak solutions of nonlinear hyperbolic equations and their numerical computation,” Commun. Pure Appl. Math. 7, 159 (1954).

    Article  MathSciNet  MATH  Google Scholar 

  8. V. V. Rusanov, “The calculation of the interaction of nonstationary shock waves and obstacles,” USSR Comput. Math. Math. Phys. 1 (2), 304–320 (1961).

    Article  Google Scholar 

  9. A. Harten, P. D. Lax, and B. van Leer, “On upstream differencing and Godunov-type schemes for hyperbolic conservation laws,” SIAM Rev. 25 (1), 35–61 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  10. P. L. Roe, “Approximate Riemann solvers, parameter vectors, and difference schemes,” J. Comput. Phys. 43 (2), 357–372 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  11. A. S. Kholodov, “Construction of difference schemes with positive approximation for hyperbolic equations,” USSR Comput. Math. Math. Phys. 18 (6), 116–132 (1978).

    Article  MATH  Google Scholar 

  12. B. Enguist and S. Osher, “One-sided difference approximation for nonlinear conservation laws,” Math. Comput. 36, 321–351 (1981).

    Article  MathSciNet  Google Scholar 

  13. S. Osher, “Riemann solvers, the entropy condition, and difference approximations,” SIAM J. Numer. Anal. 21 (2), 217–235 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  14. E. F. Toro, M. Spruce, and S. Speares, “Restoration of the contact surface in the HLL Riemann solver,” Shock Waves 4, 25–34 (1994).

    Article  MATH  Google Scholar 

  15. V. P. Kolgan, “Application of the principle of minimizing the derivative to the construction of finite-difference schemes for computing discontinuous gas flows,” Uch. Zap. Tsentr. Aerogidrodin. Inst. 3 (6), 68–77 (1972).

    Google Scholar 

  16. E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, 2nd ed. (Springer-Verlag, 1999).

    Book  MATH  Google Scholar 

  17. R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems (Cambridge Univ. Press, London, 2004).

    Google Scholar 

  18. E. Stein, R. de Borst, and T. Hughes, Encyclopedia of Computational Mechanics (Wiley, Chichester, 2004).

    Book  MATH  Google Scholar 

  19. B. van Leer, “Review article: Upwind and high-resolution methods for compressible flow: From donor cell to residual-distribution schemes,” Commun. Comput. Phys. 1 (2), 192–206 (2006).

    MATH  Google Scholar 

  20. M. Berger and M. J. Aftosmis, “Analysis of slope limiters on irregular grids,” AIAA Paper 2005-0490 (2005).

Download references

ACKNOWLEDGMENTS

The computations performed in this work were supported by the Russian Science Foundation (project no. 17-11-01293) and by the Ministry of Education and Science of the Russian Federation (4.1.3 Joint laboratories of Novosibirsk State University and Novosibirsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences). The theoretical part of the work was supported by the Russian Foundation for Basic Research, project no. 17-01-00812\17.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Fortova.

Additional information

Translated by I. Ruzanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Godunov, S.K., Klyuchinskii, D.V., Fortova, S.V. et al. Experimental Studies of Difference Gas Dynamics Models with Shock Waves. Comput. Math. and Math. Phys. 58, 1201–1216 (2018). https://doi.org/10.1134/S0965542518080067

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542518080067

Keywords:

Navigation