Skip to main content
Log in

Testing of Adaptive Symplectic Conservative Numerical Methods for Solving the Kepler Problem

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The properties of a family of new adaptive symplectic conservative numerical methods for solving the Kepler problem are examined. It is shown that the methods preserve all first integrals of the problem and the orbit of motion to high accuracy in real arithmetic. The time dependences of the phase variables have the second, fourth, or sixth order of accuracy. The order depends on the chosen values of the free parameters of the family. The step size in the methods is calculated automatically depending on the properties of the solution. The methods are effective as applied to the computation of elongated orbits with an eccentricity close to unity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. G. N. Duboshin, Celestial Mechanics: Basic Problems and Methods (Nauka, Moscow, 1968; Defense Tech. Inf. Center, Fort Belvoir, 1969).

  2. V. I. Arnold, Mathematical Methods of Classical Mechanics (Nauka, Moscow, 1979; Springer Science & Business Media, New York, 2013).

  3. L. D. Landau and E. M. Lifshitz, Mechanics (Nauka, Moscow, 1973; Butterworth-Heinemann, Oxford, 1976).

  4. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1991).

    MATH  Google Scholar 

  5. Computational Molecular Dynamics: Challenges, Methods, Ideas, Ed. by P. Deuflhard, J. Hermans, B. Leimkuhler, (Springer-Verlag, Berlin, 1998).

    Google Scholar 

  6. E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration, 2nd ed. (Springer, Berlin, 2006).

    MATH  Google Scholar 

  7. Y. B. Suris, “On the conservation of the symplectic structure in numerical solutions of Hamilton systems,” Numerical Solutions of Ordinary Differential Equations (Keldysh Inst. Appl. Math., USSR Acad. Sci., Moscow, 1988), pp. 148–160.

  8. J. M. Sanz-Serna, “Runge–Kutta schemes for Hamiltonian systems,” BIT 28 (4), 877–883 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Reich, “Momentum conserving symplectic integrators,” Physica D 76, 375–383 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  10. R. I. McLachan, G. R. W. Quispel, and N. Robidoux, “Geometric integration using discrete gradients,” Phil. Trans. R. Soc. London Ser. A 357 1021–1054 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  11. C. Kane, J. E. Marsden, and M. Ortiz, “Symplectic-energy-momentum preserving variational integrators,” J. Math. Phys. 40 (7), 3353–3371 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  12. C. Kane, J. E. Marsden, M. Ortiz, and M. West, “Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems,” Int. J. Numer. Methods Eng. 49, 1295–1325 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  13. J. E. Marsden and M. West, “Discrete mechanics and variational integrators,” Acta Numer. 10, 1–158 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  14. L. Verlet, “Computer "experiments” on classical fluids: I. Thermodynamical properties of Lennard-Jones molecules," Phys. Rev. 159, 98–103 (1967).

    Article  Google Scholar 

  15. R. A. LaBudde and D. Greenspan, “Discrete mechanics: A general treatment,” J. Comput. Phys. 15, 134–167 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  16. Y. Minesaki and Y. Nakamura, “A new discretization of the Kepler motion which conserves the Runge–Lenz vector,” Phys. Lett. A 306, 127–133 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  17. R. Kozlov, “Conservative discretization of the Keplerian motions,” J. Phys. A: Math. Theor. 40, 4529–4539 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  18. J. L. Cieslinski, “An orbit-preserving discretization of the classical Keplerian problem,” Phys. Lett. A 370, 8–12 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  19. G. G. Elenin and T. G. Elenina, “A one-parameter family of difference schemes for the numerical solution of the Keplerian problem,” Comput. Math. Math. Phys. 55 (8), 1264–1269 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  20. G. G. Elenin and T. G. Elenina, “Adaptive symplectic conservative numerical methods for the Kepler problem,” Differ. Equations 53 (7), 923–934 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  21. E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential Equations. I: Nonstiff Problems (Springer-Verlag, Berlin, 1987).

    Book  MATH  Google Scholar 

  22. W. Oewel and M. Sofrouniou, “Symplectic Runge–Kutta schemes II: Classification of symmetric methods,” Preprint (University of Paderborn, 1997).

    Google Scholar 

  23. G. G. Elenin and P. I. Shlyakhov, “The geometric stricture of the parameter space of the three-stage symplectic Runge–Kutta methods,” Math. Model. Comput. Simul. 3 (6), 680–689 (2011).

    Article  MathSciNet  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported in part by Moscow State University and the Scientific Research Institute for System Analysis of the Russian Academy of Sciences, project no. 0065-2014-0031.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. G. Elenin or T. G. Elenina.

Additional information

Translated by I. Ruzanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elenin, G.G., Elenina, T.G. Testing of Adaptive Symplectic Conservative Numerical Methods for Solving the Kepler Problem. Comput. Math. and Math. Phys. 58, 863–880 (2018). https://doi.org/10.1134/S0965542518060052

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542518060052

Keywords:

Navigation