Skip to main content
Log in

Adaptive symplectic conservative numerical methods for the Kepler problem

  • Numerical Methods
  • Published:
Differential Equations Aims and scope Submit manuscript

Abstract

We suggest and substantiate a unified form of a family of adaptive conservative numerical methods for the Kepler problem. The family contains methods of the second, fourth, and sixth approximation order as well as an exact method. The methods preserve all the global properties of the exact solution of the problem. The variable time step is chosen automatically depending on the properties of the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Duboshin, G.N., Nebesnaya mekhanika. Osnovnye zadachi i metody (Celestial Mechanics: Main Problems and Methods), Moscow: Fizmatgiz, 1963.

    Google Scholar 

  2. Arnold, V.I., Matematicheskie metody klassicheskoi mekhaniki (Mathematical Methods of Classical Mechanics), Moscow: Nauka, 1979.

    Google Scholar 

  3. Landau, L.D. and Lifshits E.M., Mekhanika (Mechanics), Moscow: Nauka, 1973.

    MATH  Google Scholar 

  4. Allen, M.P. and Tildesley, D.J., Computer Simulation of Liquids, Oxford: Oxford Univ. Press, 1991.

    MATH  Google Scholar 

  5. Computational Molecular Dynamics: Challenges, Methods, Ideas, Deuflhard, P., Hermans, J., Leimkuhler, B., et. al., Eds., Lect. Notes Comput. Sci. Eng., vol. 4, Berlin: Springer-Verlag, 1998.

  6. Hairer, E., Lubich, C., and Wanner, G., Geometric Numerical Integration, Berlin: Springer-Verlag, 2006, 2nd ed.

    MATH  Google Scholar 

  7. Suris, Yu.B., On the conservation of the symplectic structure in numerical solutions of Hamiltonian systems, in Chislennoe reshenie obyknovennykh differentsial’nykh uravnenii (Numerical Solutions of Ordinary Differential Equations), Moscow: Inst. Prikl. Mat. Akad. Nauk SSSR, 1988, pp. 148–160.

    Google Scholar 

  8. Sanz-Serna, J.M., Runge–Kutta schemes for Hamiltonian systems, BIT Numer. Math., 1988, vol. 28, no. 4, pp. 877–883.

    Article  MathSciNet  MATH  Google Scholar 

  9. Reich, S., Momentum conserving symplectic integrators, Phys. D, 1994, vol. 76, no. 4, pp. 375–383.

    Article  MathSciNet  MATH  Google Scholar 

  10. McLachan, R.I., Quispel, G.R.W., and Robidoux, N., Geometric integration using discrete gradients, Philos. Trans. R. Soc. A, 1999, vol. 357, pp. 1021–1045.

    Article  MathSciNet  MATH  Google Scholar 

  11. Marsden, J.E. and West, M., Discrete mechanics and variational integrators, Acta Numer., 2001, vol. 10, pp. 357–514.

    Article  MathSciNet  MATH  Google Scholar 

  12. Verlet L., Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard–Jones molecules, Phys. Rev., 1967, vol. 159, pp. 98–103.

    Article  Google Scholar 

  13. LaBudde, R.A. and Greenspan D., Discrete mechanics—A general treatment, J. Comput. Phys., 1974, vol. 15, no. 2, pp. 134–167.

    Article  MathSciNet  MATH  Google Scholar 

  14. Minesaki, Y. and Nakamura, Y., A new discretization of the Kepler motion which conserves the Runge–Lenz vector, Phys. Lett. A, 2002, vol. 306, no. 2–3, pp. 127–133.

    Article  MathSciNet  MATH  Google Scholar 

  15. Kozlov, R., Conservative discretizations of the Kepler motion, J. Phys. A: Math. Theor., 2007, vol. 40, no. 17, pp. 4529–4539.

    Article  MathSciNet  MATH  Google Scholar 

  16. Cieśliński, J.L., An orbit-preserving discretization of the classical Kepler problem, Phys. Lett. A, 2007, vol. 370, no. 1, pp. 8–12.

    Article  MathSciNet  MATH  Google Scholar 

  17. Elenin, G.G. and Elenina, T.G., A one-parameter family of difference schemes for the numerical solution of the Keplerian problem, Comput. Math. Math. Phys., 2015, vol. 55, no. 8, pp. 1264–1269.

    Article  MathSciNet  MATH  Google Scholar 

  18. Hairer, E, Nørsett, P.N., and Wanner, G., Solving Ordinary Differential Equations: I. Nonstiff Problems, Berlin: Springer-Verlag, 1987. Translated under the title Reshenie obyknovennykh differentsial’nykh uravnenii. I. Nezhestkie zadachi, Moscow: Mir, 1990.

    Book  MATH  Google Scholar 

  19. Oewel, W. and Sofrouniou, M., Symplectic Runge–Kutta schemes II: classification of symmetric methods, Preprint of University of Paderborn, Paderborn, 1997.

    Google Scholar 

  20. Yelenin, G.G. and Shlyakhov, P.I., The geometric structure of the parameter space of the three-stage symplectic Runge–Kutta methods, Math. Models Comput. Simul., 2011, vol. 3, no. 6, pp. 680–689.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Elenin.

Additional information

Original Russian Text © G.G. Elenin, T.G. Elenina, 2017, published in Differentsial’nye Uravneniya, 2017, Vol. 53, No. 7, pp. 950–961.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elenin, G.G., Elenina, T.G. Adaptive symplectic conservative numerical methods for the Kepler problem. Diff Equat 53, 923–934 (2017). https://doi.org/10.1134/S0012266117070096

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012266117070096

Navigation