Skip to main content
Log in

Mosaic-skeleton method as applied to the numerical solution of three-dimensional Dirichlet problems for the Helmholtz equation in integral form

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

Interior and exterior three-dimensional Dirichlet problems for the Helmholtz equation are solved numerically. They are formulated as equivalent boundary Fredholm integral equations of the first kind and are approximated by systems of linear algebraic equations, which are then solved numerically by applying an iteration method. The mosaic-skeleton method is used to speed up the solution procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Kashirin and S. I. Smagin, “Potential-based numerical solution of Dirichlet problems for the Helmholtz equation”, Comput. Math. Math. Phys. 52 (8), 1173–1185 2012.

  2. S. I. Smagin, “Numerical solution of an integral equation of the first kind with a weak singularity for the density of a single layer potential,” USSR Comput. Math. Math. Phys. 28 (6), 41–49 1988.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. A. Kashirin and S. I. Smagin, “On numerical solution of integral equations for three-dimensional diffraction problems,” Lect. Notes Comput. Sci. 6083, 11–19 2010.

    Article  Google Scholar 

  4. A. A. Kashirin, “Conditionally correct integral equations and numerical solution of stationary problems of acoustic wave diffraction,” Vestn. Tikhookeansk. Gos. Univ., No. 3, 33–40 2012 [in Russian].

    Google Scholar 

  5. J. T. Beale, “A grid-based boundary integral method for elliptic problems in three dimensions,” SIAM J. Numer. Anal. 42 (2), 599–620 2004.

    Article  MathSciNet  MATH  Google Scholar 

  6. Y. Saad and M. Schultz, “GMRES: A general minimal residual algorithm for solving nonsymmetric linear systems,” SIAM J. Sci. Stat. Comput. 7 (3), 856–869 1986.

    Article  MathSciNet  MATH  Google Scholar 

  7. V. Rokhlin, “Rapid solution of integral equations of classic potential theory,” J. Comput. Phys. 60 (2), 187–207 1985.

    Article  MathSciNet  MATH  Google Scholar 

  8. W. Hackbush and Z. P. Novak, “On the fast matrix multiplication in the boundary element method by panel clustering,” Numer. Math. 54 (4), 463–492 1989.

    Article  MathSciNet  Google Scholar 

  9. G. Beylkin, R. Coifman, and V. Rokhlin, “Fast wavelet transform and numerical algorithms I,” Commun. Pure Appl. Math. 44 (2), 141–183 1991.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Brandt and A. A. Lubrecht, “Multilevel matrix multiplication and fast solution of integral equations,” J. Comput. Phys. 90 (2), 348–370 1990.

    Article  MathSciNet  MATH  Google Scholar 

  11. E. E. Tyrtyshnikov, “Mosaic-skeleton approximations,” Calcolo 33 (1–2), 47–57 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  12. E. E. Tyrtyshnikov, “Fast multiplication methods and solving equations,” in Matrix Methods and Computations (Inst. Vychisl. Mat. Ross. Akad. Nauk, Moscow, 1999), pp. 4–41 [in Russian].

    Google Scholar 

  13. E. E. Tyrtyshnikov, Matrix Approximations and Cost-Effective Matrix-Vector Multiplication (Inst. Vychisl. Mat. Ross. Akad. Nauk, Moscow, 1993) [in Russian].

    Google Scholar 

  14. D. V. Savost’yanov, Candidate’s Dissertation in Mathematics and Physics (Moscow, 2006).

    Google Scholar 

  15. S. A. Goreinov, N. L. Zamarashkin, and E. E. Tyrtyshnikov, “Pseudo-skeleton approximations of matrices,” Dokl. Akad. Nauk 343 (2), 151–152 1995.

    MathSciNet  MATH  Google Scholar 

  16. S. A. Goreinov, E. E. Tyrtyshnikov, and N. L. Zamarashkin, “A theory of pseudo-skeleton approximations,” Linear Algebra Appl. 261, 1–21 1997.

    Article  MathSciNet  MATH  Google Scholar 

  17. S. A. Goreinov, “Mosaic-skeleton approximations of matrices generated by asymptotically smooth and oscillatory kernels,” in Matrix Methods and Computations (Inst. Vychisl. Mat. Ross. Akad. Nauk, Moscow, 1999), pp. 42–76 [in Russian].

    Google Scholar 

  18. E. E. Tyrtyshnikov, “Incomplete cross approximations in the mosaic-skeleton method,” Computing. 64 (4), 367–380 2000.

    Article  MathSciNet  MATH  Google Scholar 

  19. A. A. Aparinov, “On application of the mosaic-skeleton approximation method for velocity field computation in unbounded 2D vortex flows,” Proceedings of International School-Workshop on Discrete Singularity Methods in Mathematical Physics Problems (Orlov. Gos. Univ., Orel, 2008), Vol. 6, pp. 6–12.

    Google Scholar 

  20. I. V. Oseledets, D. V. Savost’yanov, and S. L. Stavtsev, “Applications of nonlinear approximation methods for fast computation of sound propagation in a shallow sea,” Methods and Technologies for Solving Large-Scale Problems (Inst. Vychisl. Mat. Ross. Akad. Nauk, Moscow, 2004), pp. 171–192 [in Russian].

    Google Scholar 

  21. A. A. Aparinov and A. V. Setukha, “Application of mosaic-skeleton approximations in the simulation of threedimensional vortex flows by vortex segments,” Comput. Math. Math. Phys. 50 (5), 890–899 2010.

    Article  MathSciNet  MATH  Google Scholar 

  22. S. L. Stavtsev and E. E. Tyrtyshnikov, “Application of mosaic-skeleton approximations for solving EFIE,” PIERS Proceedings (Moscow, 2009), pp. 1752–1755.

    Google Scholar 

  23. D. V. Savost’yanov, S. L. Stavtsev, and E. E. Tyrtyshnikov, “On the use of mosaic-skeleton approximations for solving hypersingular integral equations,” Numerical Methods, Parallel Computations, and Information Technologies (Mosk. Gos. Univ., Moscow, 2008), pp. 225–244 [in Russian].

    Google Scholar 

  24. W. McLean, Strongly Elliptic Systems and Boundary Integral Equations (Cambridge Univ. Press, Cambridge, 2000).

    MATH  Google Scholar 

  25. M. Bebendorf, “Approximation of boundary element matrices,” Numer. Math. 86 (4), 565–589 2000.

    Article  MathSciNet  MATH  Google Scholar 

  26. C. D. Meyer, Matrix Analysis and Applied Linear Algebra (SIAM, Philadelphia, PA, 2000).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kashirin.

Additional information

Original Russian Text © A.A. Kashirin, S.I. Smagin, M.Yu. Taltykina, 2016, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2016, Vol. 56, No. 4, pp. 625–638.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashirin, A.A., Smagin, S.I. & Taltykina, M.Y. Mosaic-skeleton method as applied to the numerical solution of three-dimensional Dirichlet problems for the Helmholtz equation in integral form. Comput. Math. and Math. Phys. 56, 612–625 (2016). https://doi.org/10.1134/S0965542516040096

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542516040096

Keywords

Navigation