Skip to main content
Log in

On the existence of mosaic-skeleton approximations for discrete analogues of integral operators

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

Exterior three-dimensional Dirichlet problems for the Laplace and Helmholtz equations are considered. By applying methods of potential theory, they are reduced to equivalent Fredholm boundary integral equations of the first kind, for which discrete analogues, i.e., systems of linear algebraic equations (SLAEs) are constructed. The existence of mosaic-skeleton approximations for the matrices of the indicated systems is proved. These approximations make it possible to reduce the computational complexity of an iterative solution of the SLAEs. Numerical experiments estimating the capabilities of the proposed approach are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. E. Tyrtyshnikov, “Fast multiplication methods and solving equations,” in Matrix Methods and Computations (Inst. Vychisl. Mat. Ross. Akad. Nauk, Moscow, 1999), pp. 4–41 [in Russian].

    Google Scholar 

  2. V. Rokhlin, “Rapid solution of integral equations of classic potential theory,” J. Comput. Phys. 60 (2), 187–207 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  3. W. Hackbush and Z. P. Novak, “On the fast matrix multiplication in the boundary element method by panel clustering,” Numer. Math. 54 (4), 463–492 (1989).

    Article  MathSciNet  Google Scholar 

  4. G. Beylkin, R. Coifman, and V. Rokhlin, “Fast wavelet transform and numerical algorithms I,” Commun. Pure Appl. Math. 44 (2), 141–183 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Brandt and A. A. Lubrecht, “Multilevel matrix multiplication and fast solution of integral equations,” J. Comput. Phys. 90 (2), 348–370 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  6. E. E. Tyrtyshnikov, “Mosaic-skeleton approximations,” Calcolo 33 (1–2), 47–57 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  7. S. A. Goreinov, “Mosaic-skeleton approximations of matrices generated by asymptotically smooth and oscillatory kernels,” in Matrix Methods and Computations (Inst. Vychisl. Mat. Ross. Akad. Nauk, Moscow, 1999), pp. 42–76 [in Russian].

    Google Scholar 

  8. D. V. Savost’yanov, Candidate’s Dissertation in Mathematics and Physics (Institute of Numerical Mathematics, Moscow, 2006).

    Google Scholar 

  9. E. E. Tyrtyshnikov, “Incomplete cross approximations in the mosaic-skeleton method,” Computing 64 (4), 367–380 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. A. Kashirin, Candidate’s Dissertation in Mathematics and Physics (Computing Center, Far Eastern Branch, Russian Academy of Sciences, Khabarovsk, 2006).

    Google Scholar 

  11. A. A. Kashirin and S. I. Smagin, “Potential-based numerical solution of Dirichlet problems for the Helmholtz equation”, Comput. Math. Math. Phys. 52 (8), 1173–1185 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  12. S. I. Smagin, “Numerical solution of an integral equation of the first kind with a weak singularity for the density of a single layer potential,” USSR Comput. Math. Math. Phys. 28 (6), 41–49 (1988).

    Article  MATH  Google Scholar 

  13. A. A. Kashirin, S. I. Smagin, and M. Yu. Taltykina, “Mosaic-skeleton method as applied to the numerical solution of three-dimensional Dirichlet problems for the Helmholtz equation in integral form,” Comput. Math. Math. Phys. 56 (4), 612–625 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  14. Y. Saad and M. Schultz, “GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems,” SIAM J. Sci. Statist. Comput. 7 (3), 856–869 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  15. W. McLean, Strongly Elliptic Systems and Boundary Integral Equations (Cambridge Univ. Press, Cambridge, 2000).

    MATH  Google Scholar 

  16. C. D. Meyer, Matrix Analysis and Applied Linear Algebra (SIAM Philadelphia, PA, 2000).

    Book  Google Scholar 

  17. A. A. Kashirin, S. I. Smagin, and M. Yu. Taltykina, “Implementation of the mosaic-skeleton method in Dirichlet problems for the Helmholtz equation,” Inf. Sist. Upr. 4 (46), 32–42 (2015).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kashirin.

Additional information

Original Russian Text © A.A. Kashirin, M.Yu. Taltykina, 2017, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2017, Vol. 57, No. 9, pp. 1421–1432.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashirin, A.A., Taltykina, M.Y. On the existence of mosaic-skeleton approximations for discrete analogues of integral operators. Comput. Math. and Math. Phys. 57, 1404–1415 (2017). https://doi.org/10.1134/S096554251709007X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S096554251709007X

Keywords

Navigation