Skip to main content
Log in

Performance comparison of supersonic ejectors with different motive gas injection schemes applicable for flowing medium gas laser

  • Published:
Thermophysics and Aeromechanics Aims and scope

Abstract

A class of flowing medium gas lasers with low generator pressures employ supersonic flows with low cavity pressure and are primarily categorized as high throughput systems capable of being scaled up to MW class. These include; Chemical Oxygen Iodine Laser (COIL) and Hydrogen (Deuterium) Fluoride (HF/DF). The practicability of such laser systems for various applications is enhanced by exhausting the effluents directly to ambient atmosphere. Consequently, ejector based pressure recovery forms a potent configuration for open cycle operation. Conventionally these gas laser systems require at least two ejector stages with low pressure stage being more critical, since it directly entrains the laser media, and the ensuing perturbation of cavity flow, if any, may affect laser operation. Hence, the choice of plausible motive gas injection schemes viz., peripheral or central is a fluid dynamic issue of interest, and a parametric experimental performance comparison would be beneficial. Thus, the focus is to experimentally characterize the effect of variation in motive gas supply pressure, entrainment ratio, back pressure conditions, nozzle injection position operated together with a COIL device and discern the reasons for the behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.L. Carroll, Overview of high energy lasers: past, present and future, AIAA paper, 2011, No. 2011−3102.

    Google Scholar 

  2. W.E. McDermott, N.R. Pchelkin, D.J. Benard, and R.R. Bousek, An electronic transition chemical laser, Appl. Phys. Lett., 1978, Vol. 32, P. 469–470.

    Article  ADS  Google Scholar 

  3. V. Rybalkin, A. Katz, B.D. Barmashenko, and S. Rosenwaks, Nearly attaining the theoretical efficiency of supersonic chemical oxygen−iodine lasers, Appl. Phys. Lett., 2004, Vol. 85, P. 5851–5853.

    Article  ADS  Google Scholar 

  4. J. Kodymova, Overview on the chemical oxygen-iodine laser technology, SPIE, 2007, Vol. 6346.

    Google Scholar 

  5. V.K. Rebone, I.A. Fedorov, Yu.P. Maksimov, V.A. Mitryaev, N.E. Tretyakov, and A.L. Etsina, Optimization of characteristics of a CW chemical HF laser with a new method of oxidizing gas production, in: Proc. XVII Int. Symp. on Gas Flow and Chemical Laser, Lisbon, Portugal, September 15−19, 2008. SPIE, 2008, Vol. 7, P. 131.

    Google Scholar 

  6. J.D. Anderson, Jr., Gas dynamic lasers: theory, experiment and state of the art, Report prepared for Airforce Office of Scientific Research (AFOSR), Maryland University, 1974.

    Google Scholar 

  7. B.D. Barmashenko and S. Rosenwaks, Feasibility of supersonic diode pumped alkali lasers: model calculation, Appl. Phys. Lett., 2013, Vol. 201, Iss. 14, P. 141108-1−141108-4.

    Google Scholar 

  8. G. Singhal, R. Rajesh, A.L. Davar, Mainuddin, P.M.V. Subbarao, and M. Endo, Two-stage ejector based pressure recovery system for small scale SCOIL, Experimental Thermal and Fluid Science, 2006, Vol. 30, No. 5, P. 415–426.

    Article  Google Scholar 

  9. V.M. Malkov, I.A. Kiselev, I.A. Orlov, and A.E. Shatalov, Improving of flow optical quality in COIL resonator cavity as result of operation of pressure recovery system developed on base of active diffuser, in: Proc. SPIE, 2010, Vol. 7751, article id. 77510Q.

    Google Scholar 

  10. G. Singhal, Mainuddin, R.K. Tyagi, A.L. Dawar, and P.M.V. Subbarao, Pressure recovery studies on a supersonic COIL with central ejector configuration, Optics and Laser Technology, 2010, Vol. 42, P. 1145–1153.

    Article  ADS  Google Scholar 

  11. R.K. Tyagi, R. Rajesh, G. Singhal, Mainuddin, A.L. Dawar, and M. Endo, Design and realization of a 500W class jet type singlet oxygen generator with angular exit, Proc. SPIE, 2003, Vol. 4971−02.

    Google Scholar 

  12. R.K. Tyagi, R. Rajesh, G. Singhal, Mainuddin, A.L. Dawar, and M. Endo, Parametric studies of a supersonic COIL with angular jet singlet oxygen generator, Infrared Physics and Technology, 2003, Vol. 44, P. 271–279.

    Article  ADS  Google Scholar 

  13. S.E. Lamberson, The airborne laser, Proc. SPIE, 2002, Vol. 4760.

    Google Scholar 

  14. S.E. Lamberson, H. Schall, and P. Shattuck, The airborne laser, Proc. SPIE, 2007, Vol. 6346.

    Google Scholar 

  15. A.S. Boreysho, V.M. Malkov, and A.V. Savin, High-power supersonic chemical lasers: gas dynamic problems of operation of mobile systems with PRS, Proc. SPIE, 2008, Vol. 7131.

    Google Scholar 

  16. A.S. Boreisho, V.M. Mal’kov, and A.V. Savin, Chemical oxygen iodine laser: aerooptics and gas dynamics, J. Engng Phys. Thermophys., 2011, Vol. 84, No. 1, P. 59–76.

    Article  ADS  Google Scholar 

  17. M.V. Zagidullin, V.D. Nikolaev, M.I. Svistun, and N.A. Khvatov, Centrifugal bubble O2(1Δ) gas generator with a total pressure of 100 Torr, Quantum Electronics, 2008, Vol. 38, No. 8, P. 794–800.

    Article  ADS  Google Scholar 

  18. V. Jirasek, M. Censky, O. Spalek, and J. Kodymova, High pressure generator of singlet oxygen, Chemical Engng and Technology, 2013, Vol. 36, No. 10, P. 1755–1763.

    Google Scholar 

  19. K.B. Hewett, Singlet oxygen generators — the heart of chemical oxygen iodine lasers: past, present and future, Proc. SPIE, 2009, Vol. 7131. P. 713101.

    Google Scholar 

  20. FLUENT Users’ Manuals version 5.1, Fluent India, 2003.

  21. S.V. Patankar, Numerical Heat Transfer and Fluid flow, Hemisphere Publishing Corporation, New York, 1980.

    MATH  Google Scholar 

  22. Mainuddin, R.K. Tyagi, R. Rajesh, G. Singhal, and A.L. Dawar, Real time data acquisition and control system (DACS) for chemical oxygen iodine laser (COIL), J. Measurement Sci. Technol., 2003, Vol. 14, P. 1364–1372.

    Article  ADS  Google Scholar 

  23. Mainuddin, G. Singhal, R.K. Tyagi, and A.K. Maini, Diagnostics and data acquisition for chemical oxygen iodine laser, IEEE Trans. Instrumentation and Measurement, 2012, Vol. 61, P. 1747–1756.

    Article  Google Scholar 

  24. V. Kumar, G. Singhal, and P.M.V. Subbarao, Study of supersonic flow in a constant rate of momentum change (CRMC) ejector with frictional effects, Appl. Thermal Engng, 2013, Vol. 60, P. 61–71.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Singhal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singhal, G., Subbarao, P.M.V., Mainuddin et al. Performance comparison of supersonic ejectors with different motive gas injection schemes applicable for flowing medium gas laser. Thermophys. Aeromech. 24, 449–457 (2017). https://doi.org/10.1134/S086986431703012X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S086986431703012X

Key words

Navigation