Skip to main content
Log in

Chemical oxygen-iodine laser: aerooptics and gas dynamics

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

We have investigated the interaction of regular and irregular structures — systems of shock waves, rarefaction waves, and turbulent layers — in a chemical oxygen-iodine laser.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Koop, J. Hartlov, et al., Airborne laser flight-weighted laser module and COIL modeling support, AIAA Paper, No. 2000–2421 (2000).

  2. J. Shwarts, G. T. Wilson, and J. Avidor, Tactical high energy laser, Proc. SPIE, 4632 (2002).

  3. B. P. Aleksandrov, A. S. Baskhin, et al., Problems of creating self-contained mobile laser systems on the basis of continuous chemical DF lasers, Kvantovaya Élektron., 33, No. 1, 25–30 (2003).

    Article  Google Scholar 

  4. J. A. Schetz and R. A. Weinraub, Supersonic transverse injection into supersonic stream, AIAA J., 6, No. 5 (1968).

  5. F. S. Billig, R. C. Orth, and M. A. Lasky, A unified approach to the problem of gaseous jet penetration into a supersonic stream, AIAA Paper, No. 70–93 (1970).

  6. I. Evdokimov, D. Vasiliev, A. Savin, and S. Druzhinin, High efficiency mixing in high-power COIL: experiment and numerical simulation, Proc. SPIE, 5777, 117–122 (2004).

    Article  Google Scholar 

  7. T. J. Madden, Time developing 3-D simulation of chemical oxygen–iodine lasers, Proc. SPIE, 6346, No. 6346–72 (2006).

    Google Scholar 

  8. A. Boreysho, V. Malkov, and A. Savin, Problems of COIL fluid dynamics, Proc. SPIE, 6346, No. 6346–71 (2006).

  9. V. Malkov, A. Boreysho, and A. Savin (M. Endo and R. F. Walter Eds.), Fluid dynamics: Gas laser, CRC Press, Ser. Optical Sci. and Eng., 121 (2007).

  10. V. M. Mal’kov, Aerooptics of flows behind the nozzle banks of fast-flow lasers, Prikl. Mekh. Tekh. Fiz., 37, No. 6, 26–34 (1996).

    Google Scholar 

  11. V. Malkov, Effect of turbulent supersonic flow structure born by multi-nozzle banks on optical quality of medium in resonator cavity, Proc. SPIE, 3574, 179–186 (1998).

    Article  Google Scholar 

  12. A. S. Boreisho, S. L. Druzhinin, et al., Inhomogeneities of the active medium and the optical quality of the radiation of supersonic chemical oxygen–iodine lasers, Kvantovaya Élektron., 37, No. 9, 831–836 (2007).

    Article  Google Scholar 

  13. G. W. Sutton, Aero-optical foundations and applications, AIAA J., 23, No. 10, 1525–1537 (1985).

    Article  Google Scholar 

  14. A. W. Ratliff, A. J. Mc Danal, S. C. Kurzius, and W. D. Martin, Power and pressure recovery analysis of chemical laser devices, AIAA Paper, No. 75–721 (1975).

  15. A. S. Boreisho, I. A. Kiselev, V. M. Mal’kov, et al., Pressure recovery systems of high-power gas and chemical lasers, Teplofiz. Aéromekh., 8, No. 4, 605–623 (2001).

    Google Scholar 

  16. V. A. Kuz’min, Stagnation of the supersonic flow in rectangular channels, in: Gas Dynamics of the Engines of Aircraft, Collection of scientific papers, KAI, Kazan’ (1978).

  17. M. G. Ktalkherman, V. M. Mal’kov, and N. A. Ruban, Stagnation of the supersonic flow in a rectangular channel of constant cross section, Prikl. Mekh. Tekh. Fiz., No. 6, 48–57 (1984).

  18. N. A. Shushin, Experimental investigation of the start-up of plane supersonic wind tunnels with cavities in the working section and with tangential injection into the diffusor, in: Trudy TsAGI, Issue 2208, Facilities for Investigating the Aerodynamics and Strength of Aircraft, Moscow (1984).

  19. H. W. Liepman and A. Roshko, Elements of gasdynamics, Wiley, New York (1957).

    Google Scholar 

  20. A. Bhowmik, T. T. Yang, and K. Jones, Optical phase distortion and beam quality in a high-power chemical oxygen–iodine laser, Proc. SPIE meeting in San Jose (1998).

  21. L. Crocco, One-dimensional treatment of steady gas dynamics, in: Fundamentals of Gas-Dynamics, Vol. III, Princeton University Press, New York (1958).

    Google Scholar 

  22. E. P. Neumann and F. Lustwerk, Supersonic diffusers for wind tunnels, J. Appl. Mech., 16, No. 2, 195–202 (1949).

    Google Scholar 

  23. M. Ktalherman, V. Malkov, and N. Ruban, Experimental investigation of GDL diffusers, AIAA Paper, No. 90–1512 (1990).

  24. V. Malkov, I. Kiselev, and A. Savin, Diffusers of COIL and DF-lasers, Proc. SPIE, 5777, 164–169 (2004).

    Article  Google Scholar 

  25. G. N. Abramovich, Applied Gas Dynamics [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  26. G. Emanuel, Choking analysis for a cw HF/DF chemical laser, AIAA J., 20, No. 2, 1401–1409 (1982).

    Article  Google Scholar 

  27. M. Shur, M. Strelets, and A. Travin, High-order implicit multi-block Navier–Stokes code: Ten-years experience of application to RANS/DES/LES/DNS of turbulent flows, Proc. 7th Symposium on Overset Composite Grids and Solution Technology, 5–7 October, 2004, Huntington Beach, USA.

  28. A. S. Boreisho, S. L. Druzhinin, V. M. Mal’kov, et al., Pressure recovery system of a high-power HF/DF laser: realization experience, Teplofiz. Aéromekh., 14, No. 4, 591–607 (2007).

    Google Scholar 

  29. A. V. Sobolev, V. I. Zapryagaev, and V. M. Mal’kov, Application of nozzles, herringbones, and tubs for improving the flow-rate characteristics of gas ejectors, Teplofiz. Aéromekh., 14, No. 2, 201–208 (2007).

    Google Scholar 

  30. A. S. Boreisho, V. M. Mal’kov, A. V. Savin, et al., A continuous chemical oxygen–iodide laser of power 12 kW, Kvantovaya Élektron., 33, No. 4, 307–311 (2003).

    Article  Google Scholar 

  31. G. I. Taganov, I. I. Mezhirov, and V. T. Kharitonov, Experimental investigation of the gas ejector at high pressure drops, in: Collection of Papers of Investigation of Supersonic Gas Ejectors [in Russian], Izd. TsAGI, BNI, Moscow (1961), pp. 80–105.

    Google Scholar 

  32. A. L. Iskra, An ejector with different ejecting and ejected gases, in: Collection of Papers of Investigation of Supersonic Gas Ejectors [in Russian], Izd. TsAGI, BNI, Moscow (1961), pp. 303–321.

    Google Scholar 

  33. G. Singhal, R. Rajesh, et al., Two-stage ejector based on pressure recovery system for small scale SCOIL, AIAA Paper, Nos. 2005–5171 (2005).

  34. A. Boreysho and V. Malkov, Start features of supersonic chemical laser channel operating with pressure recovery system, Proc. SPIE, 6346, 6346K-1 (2006).

    Google Scholar 

  35. A. Pope and K. L. Goin, High-Speed Wind Tunnel Testing, John Wiley and Sons, Inc., New York–London–Sydney (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Mal’kov.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 84, No. 1, pp. 57–73, January–February, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boreisho, A.S., Mal’kov, V.M. & Savin, A.V. Chemical oxygen-iodine laser: aerooptics and gas dynamics. J Eng Phys Thermophy 84, 59–76 (2011). https://doi.org/10.1007/s10891-011-0456-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-011-0456-1

Keywords

Navigation