Skip to main content
Log in

New Data on the Rock and Mineral Composition of Kharchinsky and Zarechny Volcanoes, Central Kamchatka Depression: Heterogeneity of the Mantle Source and Peculiarities of Magma Evolution in the Crust

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

Kharchinsky and Zarechny volcanoes and the Kharchinsky Lake zone of monogenic cones are unique eruptive centers of magnesian lavas located above the northern margin of the Pacific plate subducting beneath Kamchatka. This paper presents new geochemical data on the composition of rocks (55 samples) and minerals (over 900 analyses of olivine, pyroxenes, amphibole, and plagioclase) of these centers analyzed by XRF and LA-ICP-MS (rocks) and electron microprobe (minerals). Most of the studied rocks are magnesian (Mg# = 60–75 mol %) medium-K basalts and basaltic andesites. Moderate-magnesian (Mg# = 52–59 mol %) basaltic andesites are present among the monogenic cones of Kharchinsky Lake. The rare rock varieties include the high-K basalts–basaltic andesites of dikes in the center of Kharchinsky volcano and the magnesian andesites (Mg# = 58–61 mol %) of the extrusions of Zarechnу volcano. The distribution of trace-element contents in these samples demonstrates enrichment in large-ion lithophile elements and light REEs at depletion in high field strength elements and heavy REEs, as is typical of arc rocks. The high-K basalts and basaltic andesites show anomalous enrichment in Ba (>1000 ppm), Th (>3.8 ppm), U (>1.8 ppm), Sr (> 800 ppm, Sr/Y > 50), and light REE (La > 20 ppm), and their compositions are close to those of low-Si adakites. The basalts and basaltic andesites contain phenocrysts of high-Mg olivine (up to Fo92.6) and clinopyroxene (Mg # up to 91 mol %). The rocks show petrographic and geochemical evidence of fractional crystallization, along with the processes of mineral accumulation and magma mixing. Some of the olivine phenocrysts show high NiO contents (up to 5000 ppm) and an elevated Fe/Mn ratio (up to 80), which were interpreted as evidence of the participation of a pyroxenite source in the magma generation processes. The use of the Ca/Fe and Ni/Mg ratios allowed us to distinguish the composition fields and evolution trends of olivine associated with different sources: peridotite and pyroxenite, which were formed by a reaction between mantle-wedge peridotites and high-Si melts of the subducted oceanic crust. The new data are consistent with other lines of evidence of melting of the subducted Pacific plate edge beneath the northern part of the Central Kamchatka Depression at the Kurile–Kamchatka and Aleutian subduction zone junction and testify to a significant heterogeneity of the mantle in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

Notes

  1. Supplementary materials for the Russian and English versions of this paper are available at https://elibrary.ru/ and http://link.springer.com/, respectively, and in Supplementary 1: ESM_1.xlsx: analyses of the secondary standards for XRF analysis; ESM_2.xlsx: analyses of the secondary standards for ICP-MS analysis; ESM_3.xlsx: analyses of the secondary standards for microprobe (EPMA) analysis; ESM_4.xlsx: whole-rock compositions of the samples; ESM_5.xlsx: composition of olivine phenocrysts in the samples; ESM_6.xlsx: composition of pyroxene phenocrysts in the samples; ESM_7.xlsx: composition of amphibole phenocrysts in the samples; ESM_8.xlsx: composition of plagioclase phenocrysts in the samples.

  2. Mineral symbols are according to (Whitney and Evans, 2010).

REFERENCES

  1. Bryant, J.A., Yogodzinski, G.M., and Churikova, T.G., High-Mg# andesitic lavas of the Shisheisky Complex, northern Kamchatka: implications for primitive calc-alkaline magmatism, Contrib. Mineral. Petrol., 2011, vol. 161, no. 5, pp. 791–810.

    Article  Google Scholar 

  2. Churikova, T., Dorendorf, F., and Wörner, G., Sources and fluids in the mantle wedge below Kamchatka, evidence from across-arc geochemical variation, J. Petrol., 2001, vol. 42, no. Iss. 8, pp. 1567–1593.

  3. Defant, M.J. and Drummond, M.S., Derivation of some modern arc magmas by melting of young subducted lithosphere, Nature, 1990, vol. 347, pp. 662–665.

    Article  Google Scholar 

  4. Gavrilenko, M., Herzberg, C., Vidito, C., et al., A calcium-in-olivine geohygrometer and its application to subduction zone magmatism, J. Petrol., 2016, vol. 57, no. 9, pp. 1811–1832.

    Article  Google Scholar 

  5. Gill, R., Igneous Rocks and Processes: a Practical Guide, John Wiley & Sons, 2011.

    Google Scholar 

  6. Gorbach, N.V. and Portnyagin, M.V., Geology and petrology of the lava complex of young Shiveluch Volcano, Kamchatka, Petrology, 2011, vol. 19, no. 2, pp. 134–166.

    Article  Google Scholar 

  7. Gorbach, N., Portnyagin, M., and Tembrel, I., Volcanic structure and composition of old Shiveluch Volcano, Kamchatka, J. Volcanol. Geotherm. Res., 2013, vol. 263, pp. 193–208.

    Article  Google Scholar 

  8. Gorbach, N., Philosofova, T., and Portnyagin, M., Amphibole record of the 1964 Plinian and following dome-forming eruptions of Shiveluch Volcano, Kamchatka, J. Volcanol. Geotherm. Res., 2020, vol. 407, p. 107108.

    Article  Google Scholar 

  9. Gordeychik, B., Churikova, T. Shea, T., et al., Fo and Ni relations in olivine differentiate between crystallization and diffusion trends, J. Petrol., 2020, vol. 61, no. 9. https://doi.org/10.1093/petrology/egaa083

  10. Govindaraju, K., Compilation of working values and sample description for 383 geostandards, Geostand. Newslett., 1994, vol. 18, pp. 1–158.

    Article  Google Scholar 

  11. Herzberg, C., Identification of source lithology in the Hawaiian and Canary islands: implications for origins, J. Petrol., 2011, vol. 52, no. 1, pp. 113–146.

    Article  Google Scholar 

  12. Herzberg, C., Asimow, P.D., Ionov, D.A., et al., Nickel and helium evidence for melt above the core–mantle boundary, Nature, 2013, vol. 493, no. 7432, pp. 393–397. https://doi.org/10.1093/petrology/egaa083

    Article  Google Scholar 

  13. Jarosewich, E., Nelen, J.A., and Norberg, J.A., Reference samples for electron microprobe analysis, Geostand. Newslett., 1980, vol. 4, pp. 43–47.

    Article  Google Scholar 

  14. Jochum, K.P., Weis, U., Schwager, B., et al., Reference values following ISO guidelines for frequently requested rock reference materials, Geostand. Geoanalyt. Res., 2016, vol. 40, no. 3, pp. 333–350.

    Article  Google Scholar 

  15. Kutyev, F.Sh. and Erlikh, E.N., Petrology of basalts of the Kharchinsy volcano group, Byull. Vulkanol. Stantsii, 1973, vol. 49, pp. 83–92.

    Google Scholar 

  16. Leake, B.E., Woolley, A.R., Arps, C.E.S., et al., Nomenclature of amphiboles: report of the subcommittee on amphiboles of the mineralogical association, Mineral. Mag., 1997, vol. 61, no. 3, pp. 295–321.

    Article  Google Scholar 

  17. Lindsley, D.H., Pyroxene thermometry, Am. Mineral., 1983, vol. 68, nos. 5–6, pp. 477–493.

    Google Scholar 

  18. Martin, H., Adakitic magmas: modern analogues of Archaean granitoids, Lithos, 1999, vol. 46, no. 3, pp. 411–429.

    Article  Google Scholar 

  19. Martin, H., Smithies, R.H., Rapp, R., et al., An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution, Lithos, 2005, vol. 79, nos. 1–2, pp. 1–24.

    Article  Google Scholar 

  20. Menyailov, A.A., Volcanoes of Kharchinsky Mounts, Tr. Lab. Vulkanologii, 1949, vol. 6, pp. 53–61.

    Google Scholar 

  21. Moyen, J.F., High Sr/Y and La/Yb ratios: the meaning of the “adakitic” “signature”, Lithos, 2009, vol. 112, nos. 3–4, pp. 556–574.

    Article  Google Scholar 

  22. Münker, C., Wörner, G., Yogodzinski, G.M., and Churikova, T., Behaviour of high field strength elements in subduction zones: constraints from Kamchatka–Aleutian arc lavas, Earth Planet. Sci. Lett., 2004, vol. 224, pp. 275–293.

    Article  Google Scholar 

  23. Nekrylov, N., Portnyagin, M.V., Kamenetsky, V.S., et al., Chromium spinel in Late Quaternary volcanic rocks from Kamchatka: implications for spatial compositional variability of subarc mantle and its oxidation state, Lithos, 2018, vol. 322, pp. 212–224.

    Article  Google Scholar 

  24. Nekrylov, N., Kamenetsky, V.S., Savelyev, D.P., et al., Platinum-group elements in Late Quaternary high-Mg basalts of eastern Kamchatka: evidence for minor cryptic sulfide fractionation in primitive arc magmas, Lithos, 2022, nos. 412–413, p. 106608.

  25. Nikulin, A., Levin, V., Carr, M., et al., Evidence for two upper mantle sources driving volcanism in central Kamchatka, Earth Planet. Sci. Lett., 2012, vol. 321–322, pp. 14–19.

    Article  Google Scholar 

  26. Nimis, P. and Ulmer, P., Clinopyroxene geobarometry of magmatic rocks part 1: an expanded structural geobarometer for anhydrous and hydrous, basic and ultrabasic systems, Contrib. Mineral. Petrol., 1998, vol. 133, no. 1, pp. 122–135.

    Article  Google Scholar 

  27. Nishizawa, T., Nakamura, H., Churikova, T., et al., Genesis of ultra-high-Ni olivine in high-Mg andesite lava triggered by seamount subduction, Sci. Rept., 2017, vol. 7, no. 1, p. 11515.

    Article  Google Scholar 

  28. Ogorodov, N.V. and Belousov, V.I., New data on the Kharchinsky and Zarechny volcanoes, Byull. Vulkanol. Stantsii, 1961, vol. 31, pp. 46–51.

    Google Scholar 

  29. Petrograficheskii kodeks Rossii. Magmaticheskie, metamorficheskie, metasomaticheskie, impaktnye obrazovaniya (Petrographic Code of Russia. Magmatic, Metamorphic, Metasomatic, and Impact Rocks), Bogatikov, O.A., Petrov, O.V., Sharpenok, L.N., Eds., St. Petersburg: VSEGEI, 2008.

    Google Scholar 

  30. Ponomareva, V., Pendea, I.F., Zelenin, E., et al., The first continuous Late Pleistocene tephra record from Kamchatka Peninsula (NW Pacific) and its volcanological and paleogeographic implications, Quatern. Sci. Rev., 2021, vol. 257, p. 106838. https://doi.org/10.1016/j.quascirev.2021.106838

    Article  Google Scholar 

  31. Portnyagin, M., Bindeman, I., Hoernle, K., and Hauff, F., Geochemistry of primitive lavas of the Central Kamchatka Depression: magma generation at the edge of the Pacific Plate, Volcanism and Subduction: The Kamchatka Region, Eichelberger, J., Gordeev, E., Kasaharaet, M., et al., Eds., Am. Geophys. Union, Geophys. Monogr., 2007, vol. 172, pp. 199–239.

  32. Portnyagin, M.V., Sobolev, A.V., Mironov, N.L., and Hoernle, K., Pyroxenite melts involved in magma genesis in Kamchatka, 19th Annual VM Goldschmidt Conference, Davos, Switzerland, Geochim. Cosmochim. Acta, 2009, vol. 73, no. 13, Suppl. 1, A1044.

    Google Scholar 

  33. Portnyagin, M.V., Mironov, N.L., and Nazarova, D.P., Copper partitioning between olivine and melt inclusions and its content in primitive island-arc magmas of Kamchatka, Petrology, 2017, vol. 25, no. 4, pp. 419–433.

    Article  Google Scholar 

  34. Sekisova, V.S., Smirnov, S.Z., Kuzmin, D.V., et al., Crust–mantle xenoliths from the Kharchinsky Volcano (Central Kamchatka depression): Mineralogy and petrogenesis, Russ. Geol. Geophys., 2021, vol. 62, no. 3, pp. 339–356.

    Article  Google Scholar 

  35. Siegrist, M., Yogodzinski, G., Bizimis, M., et al., Fragments of metasomatized forearc: origin and implications of mafic and ultramafic xenoliths from Kharchinsky Volcano, Kamchatka, Geochem. Geophys. Geosyst., 2019, no. 9, pp. 4426–4456.

  36. Siegrist, M., Yogodzinski, G.M., and Bizimis, M., Origins of Os-isotope and platinum-group element compositions of metasomatized peridotite and cumulate pyroxenite xenoliths from Kharchinsky Volcano, Kamchatka, Geochim. Cosmochim. Acta, 2021, vol. 299, pp. 130–150.

    Article  Google Scholar 

  37. Simakin, A.G., Devyatova, V.N., Salova, T.P., and Shaposhnikova, O.Yu., Experimental study of amphibole crystallization from the highly magnesian melt of Shiveluch Volcano, Kamchatka, Petrology, 2019, vol. 27, no. 5, pp. 442–459.

    Article  Google Scholar 

  38. Sobolev, A.V., Hofmann, A.W., Kuzmin, D.V., et al., The amount of recycled crust in sources of mantle-derived melts, Science, 2007, vol. 316, no. 5823, pp. 412–417.

    Article  Google Scholar 

  39. Straub, S.M., LaGatta, A.B., Pozzo, A.L.M.D., and Langmuir, C.H., Evidence from high-ni olivines for a hybridized peridotite/pyroxenite source for orogenic andesites from the central mexican volcanic belt, Geochem. Geophys. Geosyst., 2008, no. 9. https://doi.org/10.1029/2007GC001583

  40. Sun, S.S. and McDonough, W.F., Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, Geol. Soc. London, Spec. Publ. 1989, vol. 42, no. 1, pp. 313–345.

    Article  Google Scholar 

  41. Volynets, O.N., Melekestsev, I.V., Ponomareva, V.V., and Yagodzinski, J.M., Kharchinsky and Zarechny volcanoes—unique centers of Late Pleistocene magnesian basalts at Kamchatka: structural control, morphology, age, and geological structure of the volcanoes, Vulkanol. Seismol., 1998, nos. 4–5, pp. 5–18.

  42. Volynets, O.N., Melekestsev, I.V., Ponomareva, V.V., Yagodzinski, J.M., Kharchinsky and Zarechny volcanoes—unique centers of Late Pleistocene magnesian basalts at Kamchatka: composition of volcanic rocks, Vulkanol. Seismol., 1999, no. 1, pp. 31–45.

  43. Volynets, O.N., Babanskii, A.D., and Gol’tsman, Yu.V., Variations in isotopic and trace-element composition of lavas from volcanoes of the Northern Group, Kamchatka, in relation to specific features of subduction, Geochem. Int., 2000, vol. 38, no. 10, pp. 974–989.

    Google Scholar 

  44. Volynets O.N., Ponomareva V.V., Babanskii A.D. Magnesian basalts of Shiveluch andesite volcano, Kamchatka, Petrology, 1997, vol. 5, no. 2, pp. 183–196.

    Google Scholar 

  45. Whitney, D.L. and Evans, B.W., Abbreviations for names of rock-forming minerals, Am. Mineral., 2010, vol. 95, no. 1, pp. 185–187.

    Article  Google Scholar 

  46. Yogodzinski, G.M., Lees, J.M., Churikova, T.G., et al., Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges, Nature, 2001, vol. 409, pp. 500–504.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank O.A. Khleborodova for preparing the samples for chemical analysis, conducting high-temperature melting of rock powders, and carrying out microprobe analyses. The fieldwork aimed at sampling the bottom part of Zarechny volcano and auxiliary cones of Kharchinsky volcano was conducted under the joint Russian–German research project KOMEX-2 with the participation of N.L. Mironov, A.B. Belousov and O.A. Khleborodova. The authors are grateful to S.Z. Smirnov for constructive criticism that led us to present a better argumentation in support of some of the conclusions and improve the manuscript.

Funding

KOMEX-2 Project was financed by the Ministry for Science and Education of Germany. This study was finished under Russian government-financed research project 0282-2019-0004 for the Institute of Volcanology and Seismology, Far Eastern Branch, Russian Academy of Sciences, Petropavlovsk-Kamchatsky,

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Gorbach.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Kurdyukov

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorbach, N.V., Nekrylov, N.A., Portnyagin, M.V. et al. New Data on the Rock and Mineral Composition of Kharchinsky and Zarechny Volcanoes, Central Kamchatka Depression: Heterogeneity of the Mantle Source and Peculiarities of Magma Evolution in the Crust. Petrology 31, 320–337 (2023). https://doi.org/10.1134/S0869591123030050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591123030050

Keywords:

Navigation