Skip to main content
Log in

Sulfide Mineralization in Pyrometamorphosed Upper Crustal Xenoliths, Bezymianny Volcano, Kamchatka

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

Bezymianny volcano eruptions transport numerous xenoliths to the surface. Crustal xenoliths contain unique information about the crust structure and composition of crustal rocks located around the active magmatic system. We describe the chemical and mineral composition of upper crustal xenoliths that pyrometamorphosed (recrystallized and partially melted) in the Bezymianny shallow chamber. We reconstructed protoliths and hydrothermal processes for several rocks, which were previously altered, based on pre-pyrometamorhic relics (primary igneous associations in some xenoliths and rare hydrothermal relics). Moderate-K andesites, basaltic andesites, and basalts of Kamen and Bezymianny volcanoes dominate among the xenoliths. During pyrometamorphism, a microgranoblastic assemblage composed of homogenous pyroxenes, plagioclase, Fe-Ti oxides, and interstitial glass is formed in these xenoliths. Less common xenoliths are presented by high-K basaltic trachyandesite (plateau basalt from the basement of the Klyuchevskaya group of volcanoes). Quartz–carbonate–sulfide mineralization is present in some of them, which formed prior to xenolith entrapment and pyrometamorphism. When xenoliths were entrapped by magma, recrystallization of hydrothermally altered rock produced Fe-wollastonite–hedenbergite association (in some cases with garnet), untypical for Bezymianny. Some of these xenoliths have extremely high copper content (up to 1500 ppm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

Notes

  1. Supplementary 1 available on http://link.springer.com/ presents following data: ESM_1.xlsx—Data on mineral associations in pyrometamorphosed upper crustal xenoliths; ESM_2.xlsx—Representative analyses of pyroxenes from pyrometamorphoes upper crustal xenoliths; ESM_3.xlsx—Representative analyses of plagioclase from pyrometamorphosed upper crustal xenoliths; ESM_4.xlsx—Representative analyses of olivine relict from pyrometamorphosed upper crustal xenoliths; ESM_5.xlsx—Representative analyses of amphibole from pyrometamorphosed upper crustal xenolihs; ESM_6.xlsx—Representative analyses of glass from pyrometamorphosed upper crustal xenoliths; ESM_7.xlsx—Representative analyses of newly formed Fe-Ti oxides from pyrometamorphosed upper crustal xenoliths; ESM_8.xlsx—Representative analyses of newly formed apatite from pyrometamorphosed upper crustal xenoliths; ESM_9.xlsx—Composition of sulfide phases from pyrometamorphosed upper crustal xenoliths; ESM_10.xlsx—Representative analyses of biotite relicts from pyrometamorphosed upper crustal xenoliths; ESM_11.xlsx—Representative analyses of silica phases from pyrometamorphosed upper crustal xenoliths; ESM_12.xlsx—Representative analyses of newly formed garnet from pyrometamorphosed upper crustal xenoliths; ESM_13.xlsx—Representative analyses of newly formed titanite from pyrometamorphosed upper crustal xenoliths. Supplementary 2: ESM_1.pdf—Bulk chemical and modal mineral compositions of studied rocks.

REFERENCES

  1. Almeev, R.R., Kimura, J-I., Ariskin, A.A., and Ozerov, A.Yu., Decoding crystal fractionation in water-rich calk-alkaline magma from Bezymianny Volcano, Kamchatka, Russia, using mineral and bulk rock chemistry, J. Volcanol. Geotherm. Res., 2013, vol. 263, pp. 141–171.

    Article  Google Scholar 

  2. Anderson, A.T. and Lindsley, D.H., Model for the Ti magnetite or ilmenite geothermometers and oxygen barometers, Trans. Amer. Geophys. Union, 1985, vol. 66, p. 416.

    Google Scholar 

  3. Beard, J.S. and Lofgren, G.E., Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6. 9 kb, J. Petrol., 1991, vol. 32, no. 2, pp. 365–401.

    Article  Google Scholar 

  4. Beyer, C., Frost, D.J., and Miyajima, N., Experimental calibration of a garnet–clinopyroxene geobarometer for mantle eclogites, Contrib. Mineral. Petrol., 2015, vol. 169, no. 2, pp. 1–21.

    Article  Google Scholar 

  5. Braitseva, O.A., Melekestsev, I.V., Ponomareva, V.V., and Sulerzhitsky, L.D., Ages of calderas, large explosive craters and active volcanoes in the Kuril-Kamchatka region, Russia, Bull. Volcanol., 1995, vol. 57, no. 6, pp. 383–402.

    Google Scholar 

  6. Braschi, E., Francalanci, L., and Vougioukalakis, G.E., Inverse differentiation pathway by multiple mafic magma refilling in the last magmatic activity of Nisyros volcano, Greece, Bull. Volcanol., 2012, vol. 74, no. 5, pp. 1083–1100.

    Article  Google Scholar 

  7. Calkins, J.A., 40Ar/39Ar geochronology of Khapitsa plateau and study Onaya River basalts and basaltic andesites in Central Kamchatka Depression, Kamchatka, Russia, linkages among tectonics, seismicity, magma genesis, and eruption in volcanic arcs. IV International Biennial Workshop on Subduction Processes Emphasizing the Japan-Kurile-Kamchatka-Aleutian Arcs, Petropavlovsk-Kamchatsky: IVS FEB RAS, 2004, pp. 53–54.

  8. Churikova, T., Dorendorf, F., and Wörner, G., Sources and fluids in the mantle wedge below Kamchatka, evidence from across-arc geochemical variation, J. Petrol., 2001, vol. 42, no. 8, pp. 1567–1593.

    Article  Google Scholar 

  9. Churikova T.G., Gordeichik B.N., Ivanov B.V. Petrochemistry of Kamen Volcano: a comparison with neighboring volcanoes of the Klyuchevskoy Group, J. Volcanol. Seismol., 2012., vol. 6, no. 3, pp. 150–171.

    Article  Google Scholar 

  10. Churikova, T.G., Gordeychik, B.N., Ivanov, B.V., and Worner, G., Relationship between Kamen Volcano and the Klyuchevskaya Group of Kamchatka), J. Volcanol. Geotherm. Res., 2013, vol. 263, pp. 3–21.

    Article  Google Scholar 

  11. Churikova, T.G., Gordeychik, B.N., Iwamori, H., et al., Petrological and geochemical evolution of the Tolbachik volcanic massif, Kamchatka, Russia, J. Volcanol. Geotherm. Res., 2015, vol. 307, pp. 156–181.

    Article  Google Scholar 

  12. Dachs, E. and Geiger, C.A., Thermodynamic behaviour of grossular–andradite, \({\text{C}}{{{\text{a}}}_{{\text{2}}}}{{{\text{(A}}{{{\text{l}}}_{x}}{\text{Fe}}_{{1\,\, - \,\,x}}^{{3 + }}{\text{)}}}_{{\text{2}}}}{\text{S}}{{{\text{i}}}_{{\text{2}}}}{{{\text{O}}}_{{{\text{12}}}}}\) garnets: a calorimetric study, Eur. J. Mineral., 2019, vol. 31, no. 3, pp. 443–451.

    Article  Google Scholar 

  13. Davydova, V.O., Shcherbakov, V.D., Plechov, P.Yu., and Perepelov, A.B., Petrology of mafic enclaves in the 2006–2012 eruptive products of Bezymianny Volcano, Kamchatka, Petrology, 2017, vol. 25, no. 6, pp. 592–614.

    Article  Google Scholar 

  14. Davydova, V.O., Plechov, P.Yu., Shcherbakov, V.D., and Perepelov, A.B., High-K basaltic tarchyandesite xenoliths in pyroclastic deposits from the Bezymianny Volcano (Kamchatka), Russ. Geol. Geophys., 2018a, vol. 59, no. 9, pp. 1087–1099.

    Article  Google Scholar 

  15. Davydova, V.O., Shcherbakov, V.D., and Plechov, P.Yu., The timescales of magma mixing in the plumbing system of Bezymianny Volcano (Kamchatka): insights from diffusion chronometry, Moscow Univ. Geol. Bull., 2018b, vol.73, no. 4, pp. 444–450.

    Article  Google Scholar 

  16. Davydova, V.O., Shcherbakov, V.D., Plechov, P.Y., and Koulakov, I.Y., Petrological evidence of rapid evolution of the magma plumbing system of Bezymianny Volcano in Kamchatka before the December 20th, 2017 eruption, J. Volcanol. Geotherm. Res, 2022, vol. 421, p. 107422.

    Article  Google Scholar 

  17. Flerov, G.B. and Ovsyannikov, A.A., Ushkovskii Vulkan, Deistvuyushchie vulkany Kamchatki (Active Volcanoes of Kamchatka), Moscow: Nauka, 1991, vol. 1, p. 156.

    Google Scholar 

  18. Ganino, C., Libourel, G., and Bernard, A., Fumarolic incrustations at Kudryavy Volcano (Kamchatka) as a guideline for high-temperature (>850°C) extinct hydrothermal systems, J. Volcanol. Geotherm. Res., 2019, vol. 376, pp. 75–85.

    Article  Google Scholar 

  19. Georgatou, A., Chiaradia, M., and Klaver, M., Deep to shallow sulfide saturation at Nisyros active volcano, Geochem. Geophys. Geosyst., 2022, vol. 23, no. 2, p. e2021GC010161

  20. Graham, I.J., Petrography and origin of metasedimentary xenoliths in lavas from Tongariro volcanic centre, N. Z. J. Geol. Geophys., 1987, vol. 30, no. 2, pp. 139–157.

    Article  Google Scholar 

  21. Grant, J.A., Isocon analysis: a brief review of the method and applications, Phys. Chem. Earth, Parts A, 2005, vol. 30, nos. 17–18, pp. 997–1004.

    Google Scholar 

  22. Grapes, R., Pyrometamorphism, Springer Science & Business Media, 2011.

    Google Scholar 

  23. Green, R.G., Sens-Schönfelder, C., Shapiro, N., et al., Magmatic and sedimentary structure beneath the Klyuchevskoy volcanic group, Kamchatka, from ambient noise tomography, J. Geophys. Res.: Solid Earth, 2020, vol. 125, no. 3, p. e2019JB018900.

  24. Harker, R.I. and Tuttle, O.F., Experimental data on the p (sub co 2)-T curve for the reaction; calcite-quartz ❬–❭ wollastonite–carbon dioxide, Am. J. Sci., 1956, vol. 254, no. 4, pp. 239–256.

    Article  Google Scholar 

  25. Iacono-Marziano, G., Le Vaillant, M., Godel, B.M., et al., The critical role of magma degassing in sulphide melt mobility and metal enrichment, Nat. Commun., 2022, vol. 13, no. 1, pp. 1–10.

    Article  Google Scholar 

  26. Ionov, D.A., Bénard, A., Plechov, P.Yu., and Shcherbakov, V.D., Along-arc variations in lithospheric mantle compositions in Kamchatka, Russia: first trace element data on mantle xenoliths from the Klyuchevskoy Group Volcanoes, J. Volcanol. Geotherm. Res., 2013, vol. 263, pp. 122–131.

    Article  Google Scholar 

  27. Ivanov, B.V., Some features of volcanism of the Klyuchevskoy Group Volcanoes in relation with its deep structure, Glubinnoe stroenie, seismichnost' i sovremennaya deyatel’nost' Klyuchevskoi gruppy vulkanov (Deep Structure, Seismicity, and Present-Day Activity of the Klyuchevskoy Group Volcanoes), Vladivostok: DVNTs AN SSSR, 1976, pp. 52–61.

  28. Ivanov, B.V., Popruzhenko, S.V., and Aprelkov, S.E., Deep structure of the Central-Kamchatka depression and structural position of the volcanoes, Geodinamika i vulkanizm Kurilo-Kamchatskoi ostrovoduzhnoi sistemy (Geodynamics and Volcanism of the Kuril–Kamchatka Island-Arc System), 2001, pp. 45–57

    Google Scholar 

  29. Jarosewich, E., Nelen, J.A., and Norberg, J.A., Reference samples for electron microprobe analysis, Geostand. Newslet., 1980, vol. 4, no. 1, pp. 43–47.

    Article  Google Scholar 

  30. Koulakov, I., Abkadyrov, I., Al Arifi, N., et al., Three different types of plumbing system beneath the neighboring active volcanoes of Tolbachik, Bezymianny, and Klyuchevskoy in Kamchatka, J. Geophys. Res.: Solid Earth, 2017, vol. 122, no. 5, pp. 3852–3874.

    Article  Google Scholar 

  31. Koulakov, I., Plechov, P., Mania, R., et al., Anatomy of the Bezymianny Volcano merely before an explosive eruption on 20.12. 2017, Sci. Rept., 2021, vol. 11, no. 1, pp. 1–12.

    Google Scholar 

  32. Lee, C.T.A., Luffi, P., Chin, E.J., et al., Copper systematics in arc magmas and implications for crust-mantle differentiation, Science, 2012, vol. 336, no. 6077, pp. 64–68.

    Article  Google Scholar 

  33. Lee, C.T.A. and Tang, M., How to make porphyry copper deposits, Earth Planet. Sci. Lett., 2020, vol. 529, p. 115868.

    Article  Google Scholar 

  34. Lepage, L.D., Ilmat: an excel worksheet for ilmenite-magnetite geothermometry and geobarometry, Comp. Geosci., 2003, vol. 29, no. 5, pp. 673–678.

    Article  Google Scholar 

  35. Lesher, C.M., Roles of xenomelts, xenoliths, xenocrysts, xenovolatiles, residues, and skarns in the genesis, transport, and localization of magmatic Fe–Ni–Cu–PGE sulfides and chromite, Ore Geol. Rev., 2017, vol. 90, pp. 465–484.

    Article  Google Scholar 

  36. López-Moro, F.J., EASYGRESGRANT–A Microsoft Excel spreadsheet to quantify volume changes and to perform mass-balance modeling in metasomatic systems, Comp. Geosci., 2012, vol. 39, p. 191.

    Article  Google Scholar 

  37. Malyshev, A.I., Zhizn’ vulkana (Life of Volcano), Yekaterinburg: Izd-vo UrO RAN, 2000.

  38. Martel, C., Pichavant, M., Di Carlo, I., et al., Experimental constraints on the crystallization of silica phases in silicic magmas, J. Petrol., 2021, vol. 62, no. 1, p. egab004

  39. Melekestsev, I.V., Vulkanizm i rel’efoobrazovanie (Volcanism and Relief Formation), Moscow: Nauka, 1980.

  40. Melekestsev, I.V., Volynets, O.N., Ermakov, V.A., et al., Shiveluch Volcano, Deistvuyushchie vulkany Kamchatki (Active Volcanoes of Kamchatka), Moscow: Nauka, 1991, vol. 1, pp. 82–97.

    Google Scholar 

  41. Melekhova, E., Camejo-Harry, M., Blundy, J., et al., Arc crust formation of Lesser Antilles revealed by crustal xenoliths from Petit St. Vincent, J. Petrol., 2022, vol. 63, no. 5, P. egac033.

  42. Moecher, D.P. and Chou, I.M., Experimental investigation of andradite and hedenbergite equilibria employing the hydrogen sensor technique, with revised estimates of \({{\Delta }_{{\text{f}}}}{\text{G}}_{{{\text{m}}{\text{, 298}}}}^{0}\) for andradite and hedenbergite, Am. Mineral., 1990, vol. 75, nos. 11–12, pp. 1327–1341.

    Google Scholar 

  43. Nachit, H., Ibhi, A., and Ohoud, M.B., Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites, C. R. Geosci., 2005, vol. 337, no. 16, pp. 1415–1420.

    Article  Google Scholar 

  44. Nakamura, D., A new formulation of garnet-clinopyroxene geothermometer based on accumulation and statistical analysis of a large experimental data set, J. Metamorph. Geol., 2009, vol. 27, no. 7, pp. 495–508.

    Article  Google Scholar 

  45. Palin, R.M., White, R.W., Green, E.C., et al., High-grade metamorphism and partial melting of basic and intermediate rocks, J. Metamorph. Geol., 2016, vol. 34, no. 9, pp. 871–892.

    Article  Google Scholar 

  46. Piip, B.I. Klyuchevskaya sopka i ee izverzheniya v 1944-1945 gg. i v proshlom (Klyuchevskaya Hill and its Eruptions in 1944–1945 and in the Past), Moscow: AN SSSR, 1956, vol. II.

  47. Portnyagin, M., Duggen, S., Hauff, F., et al., Geochemistry of the Late Holocene rocks from the Tolbachik volcanic field, Kamchatka: quantitative modelling of subduction-related open magmatic systems, J. Volcanol. Geothermal Res., 2015, vol. 307, pp. 182–199.

    Article  Google Scholar 

  48. Pure, L.R., Charlier, B.L., Wilson, C.J., et al., Chemical and isotopic changes induced by pyrometamorphism in metasedimentary xenoliths at Tongariro Volcano, New Zealand, Lithos, 2021, vol. 400, p. 106404.

    Article  Google Scholar 

  49. Putirka, K.D., Thermometers and barometers for volcanic systems, Rev. Mineral. Geochem., 2008, vol. 69, no. 1, pp. 61–120.

    Article  Google Scholar 

  50. Rutstein, M.S., Re-examination of the wollastonite–hedenbergite (CaSiO3–CaFeSi2O6) equilibria, Am. Mineral., 1971, vol. 56, nos. 11–12, pp. 2040–2052.

    Google Scholar 

  51. Seryotkin, Y.V., Sokol, E.V., and Kokh, S.N., Natural pseudowollastonite: crystal structure, associated minerals, and geological context, Lithos, 2012, vol. 134, pp. 75–90.

    Article  Google Scholar 

  52. Shcherbakov, V.D., Plechov, P.Y., Izbekov, P.E., and Shipman, J.S., Plagioclase zoning as an indicator of magma processes at Bezymianny Volcano, Kamchatka, Contrib. Mineral. Petrol., 2011, vol. 162, pp. 83–99.

    Article  Google Scholar 

  53. Shimazaki, H. and Yamanaka, T., Iron–wollastonite from skarns and its stability relation in the CaSiO3–CaFeSi2O6 join, Geochem. J., 1973, vol. 7, no. 2, pp. 67–79.

    Article  Google Scholar 

  54. Sillitoe, R.H., Porphyry copper systems, Econ. Geol., 2010, vol. 105, no. 1, pp. 3–41.

    Article  Google Scholar 

  55. Sun, W. and Shang, X., In situ experiments reveal mineralization details of porphyry copper deposits, J. Oceanol. Limnol., 2022, vol. 40, no. 1, pp. 110–112.

    Article  Google Scholar 

  56. Sun, W., Liang, H.Y., Ling, M.X., et al., The link between reduced porphyry copper deposits and oxidized magmas, Geochim. Cosmochim. Acta, 2013, vol. 103, pp. 263–275.

    Article  Google Scholar 

  57. Tanner, S.B., Kerrick, D.M., and Lasaga, A.C., Experimental kinetic study of the reaction; calcite + quartz ❬–❭ wollastonite + carbon dioxide, from 1 to 3 kilobars and 500 degrees to 850 degrees C, Am. J. Sci., 1985, vol. 285, no. 7, pp. 577–620.

    Article  Google Scholar 

  58. Taylor, B.E. and Liou, J.G., The low-temperature stability of andradite in COH fluids, Am. Mineral., 1978, vol. 63, nos. 3–4, pp. 378–393.

    Google Scholar 

  59. Taylor, S.R. and McLennan, S.M., The geochemical evolution of the continental crust, Rev. Geophys., 1995, vol. 33, no. 2, pp. 241–265.

    Article  Google Scholar 

  60. Turner, S.J., Izbekov, P.E., and Langmuir, C., The magma plumbing system of Bezymianny Volcano: Insights from a 54 year time series of trace element whole-rock geochemistry and amphibole compositions, J. Volcanol. Geotherm. Res., 2013, vol. 263, pp. 108–121.

    Article  Google Scholar 

  61. Warr, L.N., IMA-CNMNC approved mineral symbols, Mineral. Mag., 2021, vol. 85, no. 3, pp. 291–320.

    Article  Google Scholar 

  62. Zajacz, Z., Seo, J.H., Candela, P.A., et al., The solubility of copper in high-temperature magmatic vapors: a quest for the significance of various chloride and sulfide complexes, Geochim. Cosmochim. Acta, 2011, vol. 75, no. 10, pp. 2811–2827.

    Article  Google Scholar 

  63. Zelenski, M., Taran, Y., and Galle, B., High emission rate of sulfuric acid from Bezymianny Volcano, Kamchatka, Geophys. Rev. Lett., 2015, vol. 42, no. 17, pp. 7005–7013.

    Article  Google Scholar 

  64. Zelenski, M., Simakin, A., Taran, Y., et al., Partitioning of elements between high-temperature, low-density aqueous fluid and silicate melt as derived from volcanic gas geochemistry, Geochim. Cosmochim. Acta, 2021, vol. 295, pp. 112–134.

    Article  Google Scholar 

  65. Zelenski, M., Kamenetsky, V.S., Nekrylov, N., and Kontonikas-Charos, A., High sulfur in primitive arc magmas, its origin and implications, Minerals, 2022, vol. 12, no. 1, p. 37.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to M.E. Zelenski for field works organization in 2012, to M.D. Shchekleina for help with field works in 2021; S.M. Tolchinsky for helping with sample preparation, and N.N. Koshlyakova for helping with analytical studies. The manuscript was significantly improved by the valuable comments of V.S. Kamentsky and E.V. Sokol.

Funding

The study was supported by the Russian Science Foundation (project no. 22-77-00016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. O. Davydova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davydova, V.O., Shcherbakov, V.D., Nekrylov, N.A. et al. Sulfide Mineralization in Pyrometamorphosed Upper Crustal Xenoliths, Bezymianny Volcano, Kamchatka. Petrology 31, 358–382 (2023). https://doi.org/10.1134/S0869591123030049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591123030049

Keywords:

Navigation