Skip to main content
Log in

Comparative Analysis of the Compositions of Archean and Phanerozoic Basalts: Possibilities and Limitations of Geodynamic Reconstructions on Geochemical Data

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The chemical compositions of Phanerozoic basalts of all known geodynamic settings (mid-ocean ridges, oceanic plateaus, oceanic islands, island arcs, fore-arc and back-arc basins, continental rifts, large igneous provinces) are compared with Archean basalts, including basalts of greenstone belts and high-grade gneiss complexes. Linear discriminant analysis has shown that the Archean basalts differ significantly from Phanerozoic basalts in terms of the content of the least mobile major and trace elements. In this regard, the geochemical systematics of Phanerozoic basalts in most cases cannot be used to reconstruct the geodynamic settings of Archean basalts. The results obtained are illustrated by the example of the Mesoarchean basalts of the Olondo fragment of the Tokko–Khani greenstone belt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.

Similar content being viewed by others

REFERENCES

  1. Arndt, N.T., Bruzak, G., and Reischmann, T., The oldest continental and oceanic plateaus: geochemistry of basalts and komatiites of the Pilbara Craton, Australia, Spec. Pap. Geol. Soc. Am., 2001, vol. 352, pp. 359–387.

    Google Scholar 

  2. Barnes, S.J. and Arnd, N.T., Distribution and geochemistry of komatiites and basalts through the Archean, Earth’s Oldest Rocks, 2nd Edition, Van Kranendonk, M.J. Bennet, V.C., and Hoffmann, J.E., Eds., Elsevier, 2019, pp. 103–132.

  3. Barnes, S.J., Van Kranendonk, M.J., and Sonntag, I., Geochemistry and tectonic setting of basalts from the Eastern Goldfields Superterrane, Austral. J. Earth Sci., 2012, vol. 59, pp. 707–735.

    Article  Google Scholar 

  4. Cook, Y.A., Sanislav, I.V., Hammerli, J., et al., A primitive mantle source for the Neoarchean mafic rocks from the Tanzania Craton, Geosci. Front., 2016, vol. 7, pp. 911–926.

    Article  Google Scholar 

  5. Deng, H., Kusky, T., Polat, A., et al., A 2.5 Ga fore-arc subduction–accretion complex in the Dengfeng granite-greenstone belt, Southern North China Craton, Precambrian Res., 2016, vol. 275, pp. 241–264.

    Article  Google Scholar 

  6. Glebovitsky, V.A., Kotov, A.B., Sal’nikova, E.B., Larin, A.M., et al., Granulite complexes of the Dzhugdzhur–Stanovoi fold region and the Peristanovoi Belt: age, formation conditions, and geodynamic settings of metamorphism, Geotectonics, 2009, vol. 43, no. 4, pp. 253–263.

    Article  Google Scholar 

  7. Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii. Masshtab 1 : 1 000  000 (tret’e pokolenie). Seriya Aldano-Zabaikal’skaya. List O-50 (State Geological Map of the Russian Federation. Scale 1 : 1 000 000 (Third Generation). Aldan–Transbaialia Series. Sheet O-50) St. Petersburg: Kartograficheskaya fabrika VSEGEI, 2010.

  8. Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii. Masshtab 1 : 1 000 000 (tret’e pokolenie). Seriya Aldano-Zabaikal’skaya. List O-51 (State Geological Map of the Russian Federation. Scale 1 : 1 000 000 (Third Generation). Aldan–Transbaialia Series. Sheet O-51). St. Petersburg: Kartograficheskaya fabrika VSEGEI, 2015.

  9. Hildebrand, R.S., Whalen, J.B., and Bowring, S.A., Resolving the crustal composition paradox by 3.8 billion years of slab failure magmatism and collisional recycling of continental crust, Tectonophysics, 2018, vol. 734-735, pp. 69–88.

    Article  Google Scholar 

  10. Hollings, P. and Kerrich, R., An Archean arc basalt-Nb-enriched basalt-adakite association: the 2.7 Ga confederation assemblage of the Birch–Uchi greenstone belt, Superior Province, Contrib. Mineral. Petrol., 2000, vol. 139, pp. 208–226.

    Article  Google Scholar 

  11. Keller, B. and Schoene, B., Plate tectonics and continental basaltic geochemistry throughout Earth history, Earth Planet. Sci. Lett., 2018, vol. 481, pp. 290–304.

    Article  Google Scholar 

  12. Klausen, M.B., Szilas, K., Kokfelt, T.F., et al., Tholeiitic to calc-alkaline metavolcanic transition in the Archean Nigerlikasik supracrustal belt, SW Greenland, Precambrian Res., 2017, vol. 302, pp. 50–73.

    Article  Google Scholar 

  13. Kotov, A.B., Constraints on the Geodynamic Models of the Continental Growth of the Aldan Shield, Extended Abstract of Doctoral (Geol.-Min.) Dissertation, St. Petersburg: St. Petersburg. Gos. Univ., 2003.

  14. Kotov, A.B., Sal’nikova, E.B., Larin, A.M., et al., Early Proterozoic granitoids in the junction zone of the Olekma Granite–Greenstone Belt and the Aldan Granulite–Gneiss Terrane, Aldan Shield: age, sources, and geodynamic environments, Petrology, 2004, vol. 12, no. 1, pp. 37–55.

    Google Scholar 

  15. Larin, A.M., Kotov, A.B., Sal’nikova, E.B., et al., The Kalar Compex, Aldan–Stanovoi Shield, an ancient anorthosite–mangerite–charnockite–granite association: geochronologic, geochemical, and isotopic-geochemical characteristics, Petrology, 2006, vol. 14, no. 1, pp. 2–20.

    Article  Google Scholar 

  16. Larin, A.M., Kotov, A.B., Velikoslavinskii, S.D., et al., Early Precambrian A-granitoids in the Aldan Shield and adjacent mobile belts: sources and geodynamic environments, Petrology, 2012, vol. 20, no. 3, pp. 218–239.

    Article  Google Scholar 

  17. Parks, J., Shoufa, L., Davis, D.W., et al., Meso- and Neoarchean evolution of the Island Lake greenstone belt and the northwestern Superior Province: evidence from lithogeochemistry, Nd isotope data, and U-Pb zircon geochronology, Precambrian Res., 2014, vol. 246, pp. 160–179.

    Article  Google Scholar 

  18. Polat, A., Appel, P.W.U., Frei, R., et al., Field and geochemical characteristics of the Mesoarchean (~3075 Ma) Ivisaartoq greenstone belt, southern West Greenland: evidence for seafloor hydrothermal alteration in supra-subduction oceanic crust, Gondwana Res., 2007, vol. 11, nos. 1–2, pp. 69–91.

    Article  Google Scholar 

  19. Popov, N.V., Smelov, A.N., Dobretsov, N.N., and Bogomolova, L.M., Olondinskii zelenokamennyi poyas (Olodno Greenstone Belt), Yakutsk: YaNTs SO AN SSSR, 1990.

  20. Puchtel, I.S. and Zhuravlev, D.Z., Petrology of mafic–ultramafic metavolcanics and related rocks from the Olondo greenstone belt, Aldan Shield, Petrology, 1993, vol. 1, no. 3, pp. 308–348.

    Google Scholar 

  21. Reagan, M.K., Ishizuka, O., Stern, R.J., et al., Fore-arc basalts and subduction initiation in the Izu–Bonin–Mariana system, Geochem., Geophys., Geosyst. (Electronic J. Earth Sci.), 2010, vol. 11, no. 3.

  22. Smithies, R.H., Van Kranendonk, M.J., and Champion, D.C., It started with a plume - early archean basaltic proto-continental crust, Earth Planet. Sci. Lett., 2005, vol. 238, pp. 284–297.

    Article  Google Scholar 

  23. Sun, S.-S. and McDonough, W.F., Chemical and isotopic systematic of oceanic basalts, magmatism in oceanic basin, Geol. Soc. Spec. Publ., 1989, vol. 42, pp. 313–345.

    Article  Google Scholar 

  24. Taylor, S.R. and McLennan, S.M., The Continental Crust: its Composition and Evolution, oxford: blackwell publication, 1985.

  25. Velikoslavinskii, S.D. and Glebovitskii, V.A., A New Discriminant Diagram for Classification of Island-Arc and Continental Basalts on the Basis of Petrochemical Data, Dokl. Earth Sci., 2005, vol. 401, no. 2, pp. 308–310.

    Google Scholar 

  26. Velikoslavinsky, S.D. and Krylov, D P., Geochemical discrimination of basalts formed in major geodynamic settings, Geotectonics, 2014, vol. 48, no. 6, pp. 427–439.

    Article  Google Scholar 

  27. Velikoslavinskii, S.D., Kotov, A.B., Krylov, D.P., and Larin, A.M., Determining the geodynamic setting of adakitic granitoids using geochemical data, Petrology, 2018a, vol. 26, no. 3, pp. 255–264.

    Article  Google Scholar 

  28. Velikoslavinskii, S.D., Plotkina, Yu.V., Anisimova, I.V., et al., New data on the age of the tonalite–trondhjemite orthogneisses of the Olekma Complex of the central part of the Chara–Olekma geoblock, Aldan Shield, Dokl. Earth Sci., 2018b, vol. 482, no. 5, pp. 1265–1269.

    Article  Google Scholar 

  29. Wyman, D.A., Ayer, J.A., and Devaney, J.R., Niobium-enriched basalts from the Wabigoon Subprovince, Canada: evidence for adakitic metasomatism above an Archean subduction zone, Earth Planet. Sci. Lett., 2000, vol. 179, pp. 21–30.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to V.V. Yarmolyuk and A.A. Arzamastsev for constructive comments that significantly improved the manuscript.

Funding

The studies were supported by the Russian Foundation for Basic Research (project nos. 18-55-52001 and 19-05-00175), Russian Science Foundation (project no. 19-17-00205) and Institute of Precambrian Geology and Geochronology of Russian Academy of Sciences (project no. FMNU-2019-0005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. D. Velikoslavinskii or T. M. Skovitina.

Additional information

Translated by M. M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velikoslavinskii, S.D., Krylov, D.P., Kotov, A.B. et al. Comparative Analysis of the Compositions of Archean and Phanerozoic Basalts: Possibilities and Limitations of Geodynamic Reconstructions on Geochemical Data. Petrology 29, 502–527 (2021). https://doi.org/10.1134/S0869591121050088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591121050088

Keywords:

Navigation