Skip to main content
Log in

Geochemical discrimination of basalts formed in major geodynamic settings

  • Published:
Geotectonics Aims and scope

Abstract

New tectonomagmatic discriminant diagrams are proposed to determine the geodynamic settings of basalt formation from geochemical data. The reference (training) sets, on which the diagrams are based, comprise (1) recent island-arc basalts (IAB, n = 2902); (2) within-plate basalts (WPB, n = 12379); (3) mid-ocean ridge basalts (MORB, n = 1828); and (4) postcollision basic rocks, including dikes and sills (PCB, n = 1823). To determine the geodynamic settings of basalt formation, the belonging of a tested object to one of WPB + PCB, MORB, or IAB + PCB groups is first established, and then PCB is discriminated from WPB or IAB. The average weighted uncertainty of IAB, MORB, and WPB identification is about 10%. The use of new diagrams results in a substantial decrease in classification errors as compared with previously elaborated plots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. D. Velikoslavinsky and V. A. Glebovitsky, “A new discriminant diagram for classification of island-arc and continental basalts on the basis of petrochemical data,” Dokl. Earth Sci. 401(2), 308–310 (2005).

    Google Scholar 

  2. N. A. Krivolutskaya and A. V. Rudakova, “Structure and geochemical characteristics of trap rocks from the Noril’sk Trough, northwestern Siberian Craton,” Geochem. Int. 47(7), 635–656 (2009).

    Article  Google Scholar 

  3. S. V. Saraev, T. P. Baturina, and A. V. Travin, “Petrology, sedimentology, geochemistry, and absolute age of Triassic volcanosedimentary rocks from the southwest of the West Siberian Geosyneclise (Kurgan region),” Russ. Geol. Geophys. 52(8), 871–887 (2011).

    Article  Google Scholar 

  4. A. V. Sobolev, N. A. Krivolutskaya, and D. V. Kuz’min, “Petrology of the parental melts and mantle sources of Siberian trap magmatism,” Petrology 17(3), 253–286 (2009).

    Article  Google Scholar 

  5. A. N. Timashkov, E. V. Tolmacheva, A. N. Larionov, S. V. Kashin, A. O. Plekhanov, Yu. S. Balashova, S. A. Sergeev, and S. D. Velikoslavinsky, “Geochrono-logical studies of intrusive rocks from the southern Siberain Craton,” Regional Geol. Metallog., No. 46, 23–37 (2011).

    Google Scholar 

  6. S. Agrawal and M. Guevara, “Tectonic discrimination of basic and ultrabasic volcanic rocks through logtransformed ratios of immobile trace elements,” Int. Geol. Rev. 50, 1057–1079 (2008).

    Article  Google Scholar 

  7. J.-A. Barrat and R. W. Nesbitt, “Geochemistry of Tertiary volcanism of Northern Ireland,” Chem. Geol. 129, 15–38 (1996).

    Article  Google Scholar 

  8. V. Cvetković, K. Šarić, D. Prelević, J. Genser, F. Neubauer, V. Hoeck, and A. von Quadt, “An anorogenic pulse in a typical orogenic setting: the geochemical and geochronological record in the East Serbian latest Cretaceous to Palaeocene alkaline rocks,” Lithos 180–181, 181–189 (2013).

    Article  Google Scholar 

  9. G. K. Czamanske, J. L. Wooden, R. J. Walker, V. A. Fedorenko, O. N. Simonov, J. R. Budahn, and D. F. Siems, “Geochemical, sotopic, and SHRIMP age data for Precambrian basement rocks, Permian volcanic rocks, and sedimentary host rocks to the ore-bearing intrusions, Norilsk-Talnakh district, Siberian Russia,” Int. Geol. Rev. 42, 895–927 (2000).

    Article  Google Scholar 

  10. L.-Q. Dai, Z.-F. Zhao, Y.-F. Zheng, and J. Zhang, “The nature of orogenic lithospheric mantle: geochemical constraints from postcollisional mafic-ultramafic rocks in the Dabie Orogen,” Chem. Geol. 334, 99–121 (2012).

    Article  Google Scholar 

  11. R. M. Ellam and K. G. Cox, “A Proterozoic lithospheric source for Karoo magmatism: evidence from the Nuanetsi picrites,” Earth Planet. Sci. Lett. 92, 207–218 (1989).

    Article  Google Scholar 

  12. A. Emre and C Şen, “Petrogenesis of the postcollisional volcanic rocks from the Borçka (Artvin) area: implications for the evolution of the Eocene magmatism in the eastern Pontides (NE Turkey),” Lithos 172/173, 98–117 (2013).

    Article  Google Scholar 

  13. L. Font, J. P. Davidson, D. G. Pearson, G. M. Nowell, D. A. Jerram, and C. J. Ottley, “Sr and Pb isotope micro-analysis of plagioclase crystals from Skye lavas: an insight into open-system processes in a flood basalt province,” J. Petrol. 49, 1449–1471 (2008).

    Article  Google Scholar 

  14. S. Fretzdorff, R. A. Livermore, C. W. Devey, P. T. Leat, and P. Stoffers, “Petrogenesis of the back-arc East Scotia Ridge, South Atlantic Ocean,” J. Petrol. 43, 1435–1467 (2002).

    Article  Google Scholar 

  15. F. E. Garland, S. P. Turner, and C. J. Hawkesworth, “Shifts in the source of the Parana basalts through time,” Lithos 37, 223–243 (1996).

    Article  Google Scholar 

  16. F. S. Genske, S. P. Turner, C. Beier, and B. F. Schaefer, “The petrology and geochemistry of lavas from the western Azores Islands of Flores and Corvo,” J. Petrol. 53, 1673–1708 (2012).

    Article  Google Scholar 

  17. F. G. F. Gibb and C. M. B. Henderson, “Chemistry of the Shiant Isles Main Sill, NW Scotland, and wider implications for the petrogenesis of mafic sills,” J. Petrol. 47, 191–230 (2005).

    Article  Google Scholar 

  18. S. A. Gibson, “The geochemistry of the Trotternish sills, Isle of Skye: crustal contamination in the British Tertiary volcanic province,” J. Geol. Soc. London 147, 1071–1081 (1990).

    Article  Google Scholar 

  19. J. B. Gill, T. F. D. Nielsen, and C. K. Brooks, “Tertiary volcanism in the Kangerlussuaq region, East Greenland: trace-element geochemistry of the lower basalts and tholeiitic dike swarms,” Spec. Publ. Geol. Soc. London 39, 161–179, 1988).

    Article  Google Scholar 

  20. F. Giordano, M. D’ Antonio, L. Civetta, S. Tonarini, G. Orsi, D. Ayalew, G. Yirgu, F. Dell’Erba, M. A. Di Vito, and R. Isaia, “Genesis and evolution of mafic and felsic magmas at Quaternary volcanoes within the Main Ethiopian Rift: insights from Gedemsa and Fanta’ Ale complexes,” Lithos 188, 130–144 (2014).

    Article  Google Scholar 

  21. K. M. Haase, C. Beier, S. Fretzdorff, J. L., and Garbe-Schönberg, C.-D., “Magmatic evolution of the South Shetland Islands, Antarctica, and implications for continental crust formation,” Contrib. Mineral. Petrol. 163, 1103–1119 (2012).

    Article  Google Scholar 

  22. C. J. Hawkesworth, P. C. Lightfoot, V. A. Fedorenko, S. Blake, A. J. Naldrett, W. Doherty, and N. S. Gorbachev, “Magma differentiation and mineralisation in the Siberian flood basalts,” Lithos 34, 61–88 (1995).

    Article  Google Scholar 

  23. C. J. Hawkesworth, P. C. Lightfoot, J. M. Hergt, A. J. Naldrett, N. S. Gorbachev, V. A. Fedorenko, and W. Doherty, “Remobilisation of the continental lithosphere by a mantle plume: trace element and Sr-, Nd-, and Pb-isotope evidence from picritic and tholeiitic lavas of the Noril’sk district, Siberian Trap,” Contrib. Mineral. Petrol. 114, 171–188 (1993).

    Article  Google Scholar 

  24. J. W. Hawkins and O. Ishizuka, “Petrologic evolution of Palau, a Nascent Island Arc,” Island Arc 18, 599–641 (2009).

    Article  Google Scholar 

  25. S. Hidalgo, M.-C. Gerbe, H. Martin, P. Samaniego, and E. Bourdon, “Role of crustal and slab components in the Northern Volcanic Zone of the Andes (Ecuador) constrained by Sr-Nd-O isotopes,” Lithos 132/133, 180–192 (2012).

    Article  Google Scholar 

  26. A. V. Ivanov, E. I. Demonterova, S. V. Rasskazov, and T. A. Yasnygina, “Low-Ti melts from the southeastern Siberian traps large igneous province: evidence for a water-rich mantle source?” J. Earth Syst. Sci. 117(1), 1–21 (2008).

    Article  Google Scholar 

  27. Ch. Jiang, P. Zhang, D. Lu, K. Bai, Y. Wang, S. Tang, J. Wang, and C. Yang, “Petrology, geochemistry, and petrogenesis of the Kalpin basalts and their Nd, Sr and Pb isotopic compositions,” Geol. Rev. (Dizhi-Lunping) 50, 492–500 (2004).

    Google Scholar 

  28. F. Jourdan, H. Bertrand, U. Scharer, J. Blichert-Toft, G. Feraud, and A. B. Kampunzu, “Major and trace element and Sr, Nd, Hf, and Pb isotope compositions of the Karoo large igneous province, Botswana-Zimbabwe: lithosphere vs mantle plume contribution,” J. Petrol. 48, 1043–1077 (2007).

    Article  Google Scholar 

  29. R. W. Kent, “Magnesian basalts from the Hebrides, cotland: chemical composition and relationship to the Icelandic plume,” J. Geol. Soc. London 152, 979–983 (1995).

    Article  Google Scholar 

  30. A. C. Kerr, “The geochemical stratigraphy, field relations and temporal variation of the Mull-Morvern lava succession,” Trans. Roy. Soc. Edinburgh, Earth Sci. 86, 35–47 (1995).

    Article  Google Scholar 

  31. A. C. Kerr, “The geochemistry of the Mull-Morvern Tertiary lava succession, NW Scotland; an assessment of mantle sources during plume-related volcanism,” Chem. Geol. 122, 43–58 (1995).

    Article  Google Scholar 

  32. A. C. Kerr, P. D. Kempton, and R. N. Thompson, “Crustal assimilation during turbulent magma ascent (at): new isotopic evidence from the Mull Tertiary lava succession, N.W. Scotland,” Contrib. Mineral. Petrol. 119, 142–154 (1995).

    Article  Google Scholar 

  33. A. C. Kerr, R. W. Kent, B. A. Thomson, and J. K. Seedhouse, “Geochemical evolution of the Tertiary Mull Volcano, Western Scotland,” J. Petrol. 40, 873–908 (1999).

    Article  Google Scholar 

  34. N. A. Krivolutskaya, A. V. Sobolev, V. N. Mikhailov, A. A. Plechova, Yu. A. Kostitsyn, I. A. Roschina, and Z. Fekiacova, “Parental melt of the Nadezhdinsky Formation: geochemistry, petrology and connection with Cu-Ni deposits (Norils’k area, Russia),” Chem. Geol. 302/303, 87–105 (2012).

    Article  Google Scholar 

  35. P. C. Lightfoot, A. J. Naldrett, N. S. Gorbachev, W. Doherty, and V. A. Fedorenko, “Geochemistry of the Siberian trap of the Noril’sk area, USSR, with implications for the relative contributions of crust and mantle to flood-basalt magmatism,” Contrib. Mineral. Petrol. 104, 631–644 (1990).

    Article  Google Scholar 

  36. A. Y. Martynov, J.-I. Kimura, Yu. A. Martynov, and A. V. Rybin, “Geochemistry of Late Cenozoic lavas on Kunashir Island, Kurile Arc,” Island Arc 19, 86–104 (2010).

    Article  Google Scholar 

  37. L. Melluso, C. Cucciniello, C. M. Petrone, M. Lustrino, V. Morra, M. Tiepolo, and L. Vasconcelos, “Petrology of Karoo volcanic rocks in the southern Lebombo Monocline, Mozambique,” J. Afr. Earth Sci. 52, 139–151 (2008).

    Article  Google Scholar 

  38. E. A. K. Middlemost, “Iron oxidation ratios, norms, and the classification of volcanic rocks,” Chem. Geol. 77, 19–26 (1989).

    Article  Google Scholar 

  39. M. A. Morrison, R. N. Thompson, I. L. Gibson, and G. F. Marriner, “Lateral chemical heterogeneity in the Paleocene upper mantle beneath the Scottish Hebrides,” Phil. Trans. Roy. Soc. London A297, 229–244 (1980).

    Article  Google Scholar 

  40. E.-R. Neumann, H. Svensen, C. Y. Galerne, and S. Planke, “Multistage evolution of dolerites in the Karoo large igneous province Central South Africa,” J. Petrol. 52, 959–984 (2011).

    Article  Google Scholar 

  41. J. A. Pearce, “Major element patterns in basalts,” J. Petrol. 17(1), 15–43 (1979).

    Article  Google Scholar 

  42. D. Ray, S. Misra, and R. Banerjee, “Geochemical variability of MORBs along slow to intermediate spreading Carlsberg-Central Indian Ridge, Indian Ocean,” J. Asian Earth Sci. 70/71, 125–141 (2013).

    Article  Google Scholar 

  43. J. H. Scarrow, J. M. Curran, and A. C. Kerr, “Major element records of variable plume involvement in the North Atlantic Province Tertiary flood basalts,” J. Petrol. 41, 1155–1176 (2000).

    Article  Google Scholar 

  44. R. Shinjo, “Petrochemistry and tectonic significance of the emerged Late Cenozoic basalts behind the Okinawa Troughs Ryukyu Arc System,” J. Volcanol. Geotherm. Res. 80, 39–53 (1998).

    Article  Google Scholar 

  45. S.-S. Sun and W. F. McDonough, “Chemical and isotopic systematic of oceanic basalts,” Geol. Soc. Spec. Publ. 42, 313–345 (1989).

    Article  Google Scholar 

  46. R. N. Thompson and M. A. Morrison, “Asthenospheric and lower-lithospheric mantle contributions to continental extensional magmatism: an example from the British Tertiary Province,” Chem. Geol. 68, 1–15 (1988).

    Article  Google Scholar 

  47. R. N. Thompson, M. A. Morrison, A. P. Dickin, I. L. Gibson, and R. S. Harmon, “Two contrasting styles of interaction between basic magmas and continental crust in the British Tertiary Volcanic Province,” J. Geophys. Res. 91, 5985–5997 (1986).

    Article  Google Scholar 

  48. B. G. J. Upton, A. C. Skovgaard, J. Mcclurg, L. A. Kirstein, M. Cheadle, C. H. Emeleus, W. J. Wadsworth, and A. E. Fallick, “Picritic magmas and the Rum ultramafic complex, Scotland,” Geol. Mag. 139, 437–452 (2002).

    Article  Google Scholar 

  49. S. P. Verma, “Statistical evaluation of bivariate, ternary, and discriminant function tectonomagmatic discrimination diagrams,” Turk. J. Earth Sci. 19, 185–238 (2010).

    Google Scholar 

  50. S. P. Verma and S. Agrawal, “New tectonic discrimination diagrams for basic and ultrabasic volcanic rocks through log-transformed ratios of high field strength elements and implications for petrogenetic processes,” Rev. Mexicana Cien. Geol. 28(1), 24–44 (2011).

    Google Scholar 

  51. S. P. Verma, M. Guevara, and S. Agrawal, “Discriminating four tectonic settings: five new geochemical diagrams for basic and ultrabasic volcanic rocks based on log-ratio transformation of major-element data,” J. Earth Syst. Sci. 115(5), 485–528 (2006).

    Article  Google Scholar 

  52. J. M. Wallace, R. M. Ellam, I. G. Meighan, P. Lyle, and N. W. Rogers, “Sr isotope data for the Tertiary lavas of Northern Ireland: evidence for open system petrogenesis, J. Geol. Soc. London 151, 869–877 (1994).

    Article  Google Scholar 

  53. S. Weerapan, A. J. Crawford, and R. F. Berry, “Geochemistry and geochronology of Late Triassic volcanic rocks in the Chiang Khong region, northern Thailand,” Island Arc 18, 32–51 (2009).

    Article  Google Scholar 

  54. G. E. Wheller, R. Varne, J. D. Foden, and M. J. Abbott, “Geochemistry of Quaternary volcanism in the Sunda-Banda arc, Indonesia, and three-component genesis of island-arc basaltic magmas,” J. Volcanol. Geotherm. Res. 32, 137–160 (1987).

    Article  Google Scholar 

  55. J. L. Wooden, G. K. Czamanske, R. M. Bouse, B.-S. W. King, R. J. Knight, and D. F. Siems, “Isotopic and trace-element constraints on mantle and crustal contributions to Siberian continental flood basalts, Noril’sk area, Siberia,” Geochim. Cosmochim. Acta 57, 3677–3704 (1993).

    Article  Google Scholar 

  56. X. Yu, Sh.-F. Yang, H.-L. Chen, Zh.-Q. Chen, Z.-L. Li, G. E. Batt, and Y.-Q Li, “Permian flood basalts from the Tarim Basin, Northwest China: SHRIMP zircon U-Pb dating and geochemical characteristics,” Gondwana Res. 20, 485–497 (2011).

    Article  Google Scholar 

  57. F. Yuan, T. Zhou, D. Zhang, S. M. Jowitt, R. R. Keays, Sh. Liu, and Yu. Fan, “Siderophile and chalcophile metal variations in basalts: Implications for the sulfide saturation history and Ni-Cu-PGE mineralization potential of the Tarim continental flood basalt province, Xinjiang Province, China,” Ore Geol. Rev. 45, 5–15 (2012).

    Article  Google Scholar 

  58. D. Zhang, T. Zhou, F. Yuan, S. M. Jowitt, Yu. Fan, and Sh. Liu, “Source, evolution and emplacement of Permian Tarim basalts: evidence from U-Pb dating, S-Nd-Pb-Hf isotope systematics and whole-rock geochemistry of basalts from the Keping area, Xinjiang Uygur Autonomous Region, Northwest China,” J. Asian Earth Sci. 49, 175–190 (2012).

    Article  Google Scholar 

  59. X. Zhang, F. Xue, L. Yuan, Y. Ma, S. A. Wilde, “Late Permian appinite-granite complex from northwestern Liaoning, North China Craton: petrogenesis and tectonic implications,” Lithos 155, 201–217 (2012).

    Article  Google Scholar 

  60. Y. Zhang, J. Liu, and F. Meng, “Geochemistry of Cenozoic volcanic rocks in Tengchong, SW China: relationship with the uplift of the Tibetan Plateau,” Island Arc 21, 255–269 (2012).

    Article  Google Scholar 

  61. Y.-T. Zhang, J. Liu, and Zh. Guo, “Basaltic rocks in the Tarim Basin, NW China: implications for plume and lithosphere interaction,” Gondwana Res. 18, 596–610 (2010).

    Article  Google Scholar 

  62. X. Zhi, Y. Song, F. A. Frey, J.-L. Feng, and M. Zhai, “Geochemistry of Hannuoba basalts, Eastern China: constraints on the origin of continental alkali and tholeiitic basalt,” Chem. Geol. 88, 1–33 (1990).

    Article  Google Scholar 

  63. M.-F. Zhou, J.-H. Zhao, Ch. Jiang, J. Gao, W. Wang, and S.-H. Yang, “OIB-like, heterogeneous mantle sources of Permian basaltic magmatism in the western Tarim Basin, NW China: implications for a possible Permian large igneous province,” Lithos 113, 583–594 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Velikoslavinsky.

Additional information

Original Russian Text © S.D. Velikoslavinsky, D.P. Krylov, 2014, published in Geotektonika, 2014, Vol. 48, No. 6, pp. 77–91.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velikoslavinsky, S.D., Krylov, D.P. Geochemical discrimination of basalts formed in major geodynamic settings. Geotecton. 48, 427–439 (2014). https://doi.org/10.1134/S0016852114060077

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852114060077

Keywords

Navigation