Skip to main content
Log in

Ilmenite from the Arkhangelsk Diamond Province, Russia: Composition, Origin and Indicator of Diamondiferous Kimberlites

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

To provide new insights into the origin and evolution of kimberlitic magmas with different diamond concentrations from the Arkhangelsk diamond province in north-western Russia, we examined the major- and trace-element compositions of ilmenite from diamondiferous kimberlite of the Grib pipe and diamond-barren kimberlites from the Kepino cluster (Stepnaya and TsNIGRI–Arkhangelskaya pipes). Ilmenite from diamond-barren kimberlites shows lower Mg, Ti, Cr, Ni and Cu concentrations with increase in both Fe3+ and Fe2+ and Nb, Ta, Zr, Hf, Zn and V concentrations. The main differences between kimberlites with different diamond contents are the Nb and Zr concentrations and their correlation patterns with Mg and Cr concentrations. Ilmenite from the Grib kimberlite has Zr concentrations <110 ppm, whereas ilmenite from the Kepino kimberlites has Zr concentrations >300 ppm. Ilmenite crystallisation within the Grib kimberlite occurred under increasing oxygen fugacity (fO2), which may reflect assimilation of mantle peridotite by the kimberlitic magmas. Ilmenite from the Kepino kimberlites suggests its crystallisation under constant fO2, with the ilmenite composition being controlled by processes of fractional crystallisation of megacrystic minerals. These assumptions were confirmed with assimilation–fractional crystallisation calculations. On the basis of obtained data, we developed a model for the evolution of the kimberlitic magmas for both diamondiferous and barren kimberlites. The diamond-bearing kimberlitic magmas were generated under intense interaction of kimberlitic magmas with the surrounding lithospheric mantle. It may be that during early modification of the lithospheric mantle by kimberlitic magmas as well as with kimberlitic magmas’ local stretching and swift ascent, the capture of the mantle xenoliths was favoured over the crystallisation of phenocrysts. The formation of barren kimberlitic magmas may have occurred when the lithospheric mantle in the vicinity of ascending magmas was already geochemically equilibrated with them. It also is possible that the magma’s ascent slowed under conditions of dominantly compressive stresses with crystallisation of olivine and other megacrystic phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

Notes

  1. The compositions of ilmenites are presented in the corresponding tables for the Russian and English online versions of the article on the sites https://elibrary.ru/ and http://link.springer.com/, respectively: ESM_1.xls—Major (EPMA) and trace (LA-ICP-MS) elements composition of ilmenite megacrysts from the Grib kimberlite. ESM_2.xls—Major (EPMA) and trace (LA-ICP-MS) elements composition of ilmenite from peridotite xenoliths from the Grib kimberlite. ESM_3.xls—Major (EPMA) and trace (LA-ICP-MS) elements composition of ilmenite from Kepino kimberlites.

REFERENCES

  1. Afanasiev, V.P., Ashchepkov, I.V., Verzhak, V.V., et al., P-T conditions and trace element variations of picroilmenites and pyropes from placers and kimberlites in the Arkhangelsk region, NW Russia, J. Asian Earth Sci., 2013, vol. 70–71, no. 1, pp. 45–63. https://doi.org/10.1016/j.jseaes.2013.03.002

    Google Scholar 

  2. Arzamastsev, A.A. and Vu, F.-Ya, U–Pb geochronology and Sr–Nd isotopic systematics of minerals from the ultrabasic-alkaline massifs of the Kola Province, Petrology, 2014, vol. 22, no. 5, pp. 462–479. https://doi.org/10.7868/S0869590314050021

    Article  Google Scholar 

  3. Ashchepkov, I.V., Alymova, N.V., Logvinova, A.M., et al., Picroilmenites in Yakutian kimberlites: variations and genetic models, Solid Earth, 2014, vol. 5, no. 2, pp. 915–938. https://doi.org/10.5194/se-5-915-2014

    Google Scholar 

  4. Beard, A.D., Downes, H., Hegner, E., and Sablukov, S.M., Geochemistry and mineralogy of kimberlites from the Arkhangelsk region, NW Russia: evidence for transitional kimberlite magma types, Lithos, 2000, vol. 51, nos 1-2, pp. 47–73. https://doi.org/10.1016/S0024-4937(99)00074-2

    Google Scholar 

  5. Bogdanova, S.V., Gorbatschev, R., and Garetsky, R.G., Europe|east European craton, Reference Module in Earth Systems and Environmental Sciences, Elsevier, 2016, pp. 1–18.

    Google Scholar 

  6. Boyd, F.R. and Nixon, P.H., Origins of the ultramafic nodules from some kimberlites of northern Lesotho and the Monastery Mine, South Africa, Phys. Chem. Earth, 1975, vol. 9, pp. 431–454. https://doi.org/10.1016/0079-1946(75)90032-4

    Google Scholar 

  7. Burgess, S.R. and Harte, B., Tracing lithosphere evolution through the analysis of heterogeneous G9–G10 garnets in peridotite xenoliths, II: REE chemistry, J. Petrol., 2004, vol. 45, no. 3, pp. 609–633. https://doi.org/10.1093/petrology/egg095

    Google Scholar 

  8. Bussweiler, Y., Pearson, D.G., Stachel, T., and Kjarsgaard, B.A., Cr-rich megacrysts of clinopyroxene and garnet from lac de gras kimberlites, slave craton, canada—implications for the origin of clinopyroxene and garnet in cratonic lherzolites, Mineral. Petrol., 2018, vol. 112, no. S2, pp. 583–596. https://doi.org/10.1007/s00710-018-0599-2

    Google Scholar 

  9. Carmody, L., Taylor, L.A., Thaisen, K.G., et al., Ilmenite as a diamond indicator mineral in the Siberian Craton: a tool to predict diamond potential, Econ. Geol., 2014, vol. 109, no. 3, pp. 775–783. https://doi.org/10.2113/econgeo.109.3.775

    Google Scholar 

  10. Castillo-Oliver, M., Melgarejo, J.C., Gali, S., et al., Use and misuse of Mg- and Mn-rich ilmenite in diamond exploration: a petrographic and trace element approach, Lithos, 2017, vol. 292-293, pp. 348–363. https://doi.org/10.1016/j.lithos.2017.09.021

    Google Scholar 

  11. Dawson, J.B. and Smith, J.V., The MARID (mica–amphibole–rutile–ilmenite–diopside) suite of xenoliths in kimberlite, Geochim. Cosmochim. Acta, 1977, vol. 41, no. 2, 311–323. https://doi.org/10.1016/0016-7037(77)90239-3

    Google Scholar 

  12. Erlank, A.J., Waters, F.G., Hawkesworth, C.J., et al., Evidence for mantle metasomatism in peridotite nodules from Kimberley Pipe, South Africa, Mantle Metasomatism, Menzies, M., Ed., San Diego: Academic Press, 1987, pp. 221–311.

    Google Scholar 

  13. Fedortchouk, Y., Canil, D., and Carlson, J.A., Dissolution forms in Lac de Gras diamonds and their relationship to the temperature and redox state of kimberlite magma, Contrib. Mineral. Petrol., 2005, vol. 150, no. 1, pp. 54–69. https://doi.org/10.1007/s00410-005-0003-1

    Google Scholar 

  14. Fedortchouk, Y. and Zhang, Z., Diamond resorption: link to metasomatic events in the mantle or record of magmatic fluid in kimberlitic magma?, Can. Mineral., 2011, vol. 49, no. 3, pp. 707–719.

    Google Scholar 

  15. Fitzpayne, A., Giuliani, A., Hergt, J., et al., New geochemical constraints on the origins of marid and pic rocks: implications for mantle metasomatism and mantle-derived potassic magmatism, Lithos, 2018a, vol. 318–319, pp. 478–493. https://doi.org/10.1016/j.lithos.2018.08.036

    Google Scholar 

  16. Fitzpayne, A., Giuliani, A., Phillips, D., et al., Kimberlite-related metasomatism recorded in MARID and PIC mantle xenoliths, Mineral. Petrol., 2018b, pp. 1–14. https://doi.org/10.1007/s00710-018-0573-z

  17. Francis, D. and Patterson, M., Kimberlites and aillikites as probes of the continental lithospheric mantle, Lithos, 2009, vol. 109, nos. 1–2, pp. 72–80. https://doi.org/10.1016/j.lithos.2008.05.007

    Google Scholar 

  18. Frost, B.R., Stability of oxide minerals in metamorphic rocks, Rev. Mineral. Geochem., 1991, vol. 25, no. 1, pp. 469–488.

    Google Scholar 

  19. Garanin, V.K., Bovkun, A.V., Garanin, K.V., et al., Mikrokristallicheskie oksidy iz kimberlitov Rossii (Microcrystalline Oxides from Kimberlites), Moscow: GEOS, 2009. 498 s.

  20. Giuliani, A., Kamenetsky, V.S., Kendrick, M.A.A., et al., Oxide, sulphide and carbonate minerals in a mantle polymict breccia: metasomatism by proto-kimberlite magmas, and relationship to the kimberlite megacrystic suite, Chem. Geol., 2013, vol. 353, pp. 4–18. https://doi.org/10.1016/j.chemgeo.2012.09.025

    Google Scholar 

  21. Giuliani, A., Phillips, D., Kamenetsky, V.S., et al., Petrogenesis of mantle polymict breccias: insights into mantle processes coeval with kimberlite magmatism, J. Petrol., 2014, vol. 55, no. 4, pp. 831–858. https://doi.org/10.1093/petrology/egu008

    Google Scholar 

  22. Giuliani, A., Phillips, D., Kamenetsky, V.S., and Goemann, K., Constraints on kimberlite ascent mechanisms revealed by phlogopite compositions in kimberlites and mantle xenoliths, Lithos, 2016, vol. 240-243, pp. 189–201. https://doi.org/10.1016/j.lithos.2015.11.013

    Google Scholar 

  23. Golubev, Yu.K., Prusakova, N.A., and Golubeva, Yu.Yu., Kepa kimberlites of the Arkhangelsk province, Rudy Met., 2010, vol. 1, pp. 38–44.

    Google Scholar 

  24. Golubkova, A.B., Nosova, A.A., and Larionova, Yu.O., Mg-ilmenite megacrysts from the Arkhangelsk kimberlites, Russia: genesis and interaction with kimberlite melt and postkimberlite fluid, Geochem. Int., 2013, vol. 51, no. 5, pp. 353–381. https://doi.org/10.7868/S0016752513030035

    Article  Google Scholar 

  25. Gregoire, M. Bell, D.R., and A. P. Le Roex, Garnet lherzolites from the Kaapvaal Craton (South Africa): trace element evidence for a metasomatic history, J. Petrol., 2003, vol. 44, no. 4, pp. 629–657. https://doi.org/10.1093/petrology/44.4.629

    Google Scholar 

  26. Griffin, W.L., Shee, S.R., Ryan, C.G., et al., Harzburgite to lherzolite and back again: metasomatic processes in ultramafic xenoliths from the Wesselton, Contrib. Mineral. Petrol., 1999, vol. 134, pp. 232–250.

    Google Scholar 

  27. Gurney, J.J., Helmstaedt, H., and Moore, R.O.O., A review of the use and application of mantle mineral geochemistry in diamond exploration, Pure Appl. Chem., 1993, vol. 65, no. 12, pp. 2423–2442. https://doi.org/10.1351/pac199365122423

    Google Scholar 

  28. Gurney, J.J. and Zweistra, P., The interpretation of the major element compositions of mantle minerals in diamond exploration, J. Geochem. Explor., 1995, vol. 53, nos. 1–3, pp. 293–309. https://doi.org/10.1016/0375-6742(94)00021-3

    Google Scholar 

  29. Haggerty, S.E., The chemistry and genesis of opaque minerals in kimberlites, Phys. Chem. Earth, 1975, vol. 9. https://doi.org/10.1016/0079-1946(75)90024-5

  30. Haggerty, S.E. and Tomkins, L.A., Redox state of earth’s upper mantle from kimberlitic ilmenites, Nature, 1983, vol. 303, pp. 295–300.

    Google Scholar 

  31. Harte, B., Mantle peridotites and processes the kimberlite samples, Continental Basalts and Mantle Xenoliths, Hawkesworth, C. and Norry, M., Eds., Nantwich, Cheshire, UK: Shiva Publishing Ltd, 1983, pp. 46–91.

    Google Scholar 

  32. Jochum, K.P., Weis, U., Stoll, B., et al., Determination of reference values for NIST SRM 610-617 glasses following ISO guidelines, Geostand. Geoanalyt. Res., 2011, vol. 35, no. 4, pp. 397–429. https://doi.org/10.1111/j.1751-908X.2011.00120.x

    Google Scholar 

  33. Johnson, K.T.M., Experimental determination of partition coefficients for rare earth and high-field-strength elements between clinopyroxene, garnet, and basaltic melt at high pressures, Contrib. Mineral. Petrol., 1998, vol. 133, nos. 1–2, pp. 60–68. https://doi.org/10.1007/s004100050437

    Google Scholar 

  34. Kamenetsky, V.S., Kamenetsky, M.B., Golovin, A.V., et al., Ultrafresh salty kimberlite of the Udachnaya–East Pipe (Yakutia, Russia): a petrological oddity or fortuitous discovery?, Lithos, 2012, vol. 152, pp. 173–186. https://doi.org/10.1016/j.lithos.2012.04.032

    Google Scholar 

  35. Kargin, A.V., Golubeva, Yu.Yu., Demonterova, E.I., and Koval’chuk, E.V., Petrographic-geochemical types of triassic alkaline ultramafic rocks in the northern Anabar Province, Yakutia, Russia, Petrology, 2017, vol. 25, no. 6, pp. 535–565. https://doi.org/10.7868/S0869590317060036

    Article  Google Scholar 

  36. Kargin, A.V., Sazonova, L.V., Nosova, A.A., and Tretyachenko, V.V., Composition of garnet and clinopyroxene in peridotite xenoliths from the Grib kimberlite pipe, Arkhangelsk diamond province, Russia: evidence for mantle metasomatism associated with kimberlite melts, Lithos, 2016, vol. 262, pp. 442–455. https://doi.org/10.1016/j.lithos.2016.07.015

    Google Scholar 

  37. Kargin, A.V., Sazonova, L.V., Nosova, A.A., et al., Cr-rich clinopyroxene megacrysts from the Grib kimberlite, Arkhangelsk Province, Russia: relation to clinopyroxene–phlogopite xenoliths and evidence for mantle metasomatism by kimberlite melts, Lithos, 2017a, vol. 292-293, pp. 34–48. https://doi.org/10.1016/j.lithos.2017.08.018

    Google Scholar 

  38. Kargin, A.V., Sazonova, L.V., Nosova, A.A., et al., Sheared peridotite xenolith from the V. Grib kimberlite pipe, Arkhangelsk diamond province, Russia: texture, composition, and origin, Geosci. Front., 2017b, vol. 8, no. 4, pp. 653–669. https://doi.org/10.1016/j.gsf.2016.03.001

    Google Scholar 

  39. Khvostikov, V.A., Karandashev, V.K., and Burmii, Zh.P., Optimization of conditions of analysis by inductively coupled plasma mass spectrometry and laser sampling, Zavodskaya Laboratoriya.Diagnostika Mineralov, 2017, vol. 83, pp. 13–20.

    Google Scholar 

  40. Kononova, V.A., Golubeva, Yu.Yu., Bogatikov, and O.A., Kargin, A.V., Diamond resource potential of kimberlites from the Zimny Bereg Field, Arkhangel’sk Oblast, Geol. Ore Deposits, 2007, vol. 49, no. 6, pp. 421–441.

    Google Scholar 

  41. Kopylova, M.G., Matveev, S., and Raudsepp, M., Searching for parental kimberlite melt, Geochim. Cosmochim. Acta, 2007, vol. 71, no. 14, pp. 3616–3629. https://doi.org/10.1016/j.gca.2007.05.009

    Google Scholar 

  42. Kostrovitsky, S.I., Alymova, N.V., Yakovlev, D.A., et al., Specific features of picroilmenite composition in various diamondiferous fields of the Yakutian Province, Dokl. Earth Sci., 2006, vol. 406, no. 1, pp. 19–23.

    Google Scholar 

  43. Kostrovitsky, S.I., Solov’eva L.V., Yakovlev D.A., et al., Kimberlites and megacrystic suite: isotope-geochemical studies, Petrology, 2013, vol. 21, no. 2, pp. 127–144. https://doi.org/10.7868/S0869590313020052

    Article  Google Scholar 

  44. Kostrovitsky, S.I., Malkovets, V.G., Verichev, E.M., et al., Megacrysts from the Grib kimberlite pipe (Arkhangelsk Province, Russia), Lithos, 2004, vol. 77, nos 1–4. https://doi.org/10.1016/j.lithos.2004.03.014

  45. Kramm, U., Kogarko, L.N., Kononova, V.A., and Vartiainen, H., The Kola alkaline province of the CIS and Finland: precise Rb-Sr ages define 380–360 Ma age range for all magmatism, Lithos, 1993, vol. 30, no. 1, pp. 33–44. https://doi.org/10.1016/0024-4937(93)90004-V

    Google Scholar 

  46. Lapin, A.V., Tolstov, A.V., and Lisitsyn, D.V., Kimberlity i konvergentnye porody (Kimberlites and Convergent Rocks), Moscow: IMGRE, 2004.

  47. Larionova, Yu.O., Sazonova, L.V., Lebedeva, N.M., et al., Kimberlite age in the Arkhangelsk Province, Russia: isotopic geochronologic Rb–Sr and 40Ar/39Ar and mineralogical data on phlogopite, Petrology, 2016, vol. 24, no. 6, pp. 562–593. https://doi.org/10.7868/S0869590316040026

    Article  Google Scholar 

  48. Lebedeva, N.M., Nosova, A.A., Kargin, A.V., and Sazonova, L.V., Multi-stage evolution of kimberlite melt as inferred from inclusions in garnet megacrysts in the Grib kimberlite (Arkhangelsk region, Russia), Mineral. Petrol., 2020 (in press). https://doi.org/10.1007/s00710-020-00704-0

  49. Martin, L.H.J., Schmidt, M.W., Mattsson, H.B., and Guenther, D., Element partitioning between immiscible carbonatite and silicate melts for dry and H2O-bearing systems at 1–3 GPa, J. Petrol., 2013, vol. 54, no. 11, pp. 2301–2338. https://doi.org/10.1093/petrology/egt048

    Google Scholar 

  50. Mitchell, R.H., Kimberlites, Orangeites, and Related Rocks, Boston: Springer, 1995.

    Google Scholar 

  51. Mitchell, R.H., Experimental studies at 5–12 GPa of the Ondermatjie hypabyssal kimberlite, Lithos, 2004, vol. 76, nos. 1–4, pp. 551–564. https://doi.org/10.1016/j.lithos.2004.03.032

    Google Scholar 

  52. Moore, A.E., A model for the origin of ilmenite in kimberlite and diamond: implications for the genesis of the discrete nodule (megacryst) suite, Contrib. Mineral. Petrol., 1987, vol. 95, no. 2, pp. 245–253. https://doi.org/10.1007/BF00381274

    Google Scholar 

  53. Moore, R.O., Griffin, W.L., Gurney, J.J., et al., Trace element geochemistry of ilmenite megacrysts from the Monastery kimberlite, South Africa, Lithos, 1992, vol. 29, nos. 1–2, pp. 1–18. https://doi.org/10.1016/0024-4937(92)90031-S

    Google Scholar 

  54. Moore, A.E. and Lock, N.P., The origin of mantle-derived megacrysts and sheared peridotites-evidence from kimberlites in the northern Lesotho–Orange free state (South Africa) and Botswana pipe clusters, South Afr. J. Geol., 2001, vol. 104, no. 1, pp. 23–38. https://doi.org/10.2113/104.1.23

    Google Scholar 

  55. Peresetskaya, E.V., Kargin, A.V., Sazonova, L.V., and Nosova, A.A., Origin of high-Ti megacrysts from kimberlites: petrological and geochemical investigations of orthopyroxene–ilmenite–garnet association in xenoliths from the Grib kimberlite (Arkhangelsk, Russia), Magmatism of the Earth and Related Strategic Metal Deposits, Moscow: VSEGEI, 2019, pp. 228–232.

    Google Scholar 

  56. Pilet, S., Baker, M.B., Müntener, O., and Stolper, E.M., Monte Carlo simulations of metasomatic enrichment in the lithosphere and implications for the source of alkaline basalts, J. Petrol., 2011, vol. 52, nos 7-8, pp. 1415–1442. https://doi.org/10.1093/petrology/egr007

    Google Scholar 

  57. Pokhilenko, N.P., Polymict breccia xenoliths: evidence for the complex character of kimberlite formation, Lithos, 2009, vol. 112, pp. 934–941. https://doi.org/10.1016/j.lithos.2009.06.019

    Google Scholar 

  58. Price, S.E., Russell, J.K., and Kopylova, M.G., Primitive magma from the Jericho pipe, N.W.T., Canada: constraints on primary kimberlite melt chemistry, J. Petrol., 2000, vol. 41, no. 6, pp. 789–808. https://doi.org/10.1093/petrology/41.6.789

    Google Scholar 

  59. Rawlinson, P.J. and Dawson, J.B.J., A quench pyroxene-ilmenite xenolith from kimberlite: implications for pyroxene–ilmenite intergrowths, The Mantle Sample: Inclusion in Kimberlites and other Volcanics, Washington, DC: Amer. Geophysical Union, 1979, pp. 292–299.

    Google Scholar 

  60. Rehfeldt, T., Jacob, D.E., Carlson, R.W., and Foley, S.F., Fe-rich dunite xenoliths from South African kimberlites: cumulates from Karoo flood basalts, J. Petrol., 2007, vol. 48, no. 7, pp. 1387–1409. https://doi.org/10.1093/petrology/egm023

    Google Scholar 

  61. Sablukov, S.M., Sablukova, L.I., Griffin, V.L., Distribution of trace elements in deep-seated kimberlite minerals as sign of plume processes in the northern Russian Platform, Glubinnyi magmatizm, ego istochniki i plyumy. IX Mezhdunarodnyi seminar (Mantle Magmatism. Its sources and Plumes. 9th International Seminar) Vladykin, N.V, Eds., Miass–Irkutsk: Inst. Geograf. Sib. Otd. Ross. Akad Nauk, 2009, pp. 135–170.

  62. Sablukov, S.M., Sablukova, L.I., and Shavyrina, M.V., Mantle xenoliths from the Zimnii bereg kimberlite deposits of rounded diamonds, Arkhangelsk diamondiferous province, Petrology, 2000, vol. 8, no. 5, pp. 466–494.

    Google Scholar 

  63. Sazonova, L.V., Nosova, A.A., Kargin, A.V., et al., Olivine from the Pionerskaya and V. Grib kimberlite pipes, Arkhangelsk diamond province, Russia: types, composition, and origin, Petrology, 2015, vol. 23, no. 3, pp. 227–258. https://doi.org/10.7868/S086959031503005X

    Article  Google Scholar 

  64. Seda, T. and Hearne, G.R., Pressure induced Fe2+ + Ti4+> Fe3+ + Ti3+ intervalence charge transfer and the Fe3+/Fe2+ ratio in natural ilmenite (FeTiO3) minerals, J. Phys. Condens. Matter., 2004, vol. 16, no. 15, pp. 2707–2718. https://doi.org/10.1088/0953-8984/16/15/021

    Google Scholar 

  65. Semytkivska, N., Picro-ilmenites: an experimental study in simple and complex systems to investigate P-t-fO2 composition relations at high pressures, A Dissertation Submitted to ETH ZURICH for the Degree of Doctor of Sciences, ETH Zurich, 2010.

  66. Shchukina, E.V., Agashev, A.M., Kostrovitskii, S.I., and Pokhilenko, N.P., Metasomatic events in the lithospheric mantle beneath the V. Grib kimberlite pipe (Arkhangelsk diamondiferous province, Russia), Russ. Geol. Geophys., 2015, vol. 56, no. 12, pp. 1701–1716. https://doi.org/10.15372/GiG20151204

    Article  Google Scholar 

  67. Shchukina, E.V., Golovin, N.N., Mal’kovets, V.G., and Pokhilenko, N.P., Mineralogy and equilibrium P–T estimates for peridotite assemblages from the V. Grib kimberlite pipe (Arkhangelsk Kimberlite Province), Dokl. Earth Sci., 2012, vol. 444, no. 2, pp. 776–781.

    Google Scholar 

  68. Sobolev, N.V., Kaminsky, F.V., Griffin, W.L., et al., Mineral inclusions in diamonds from the Sputnik kimberlite pipe, Yakutia, Lithos, 1997, vol. 39, nos 3-4, pp. 135–157.

    Google Scholar 

  69. Solov’eva, L.V., Kostrovitsky, S.I., Kalashnikova, T.V., and Ivanov, A.V., The nature of phlogopite–ilmenite and ilmenite parageneses in deep-seated xenoliths from Udachnaya Kimberlite Pipe, Dokl. Earth Sci., 2019, vol. 486, no. 1, pp. 537–540. https://doi.org/10.31857/S0869-56524862223-227

    Article  Google Scholar 

  70. Sparks, R.S.J., Kimberlite volcanism, Annu. Rev. Earth Planet. Sci., 2013, vol. 41, no. 1, pp. 497–528. https://doi.org/10.1146/annurev-earth-042711-105252

    Google Scholar 

  71. Tao, R.B., Zhang, L.F., Stagno, V., et al., High-pressure experimental verification of rutile-ilmenite oxybarometer: implications for the redox state of the subduction zone, Sci. China Earth Sci., 2017, vol. 60, no. 10, pp. 1817–1825. https://doi.org/10.1007/s11430-016-9082-5

    Google Scholar 

  72. Tretyachenko, V.V., Arkhangelsk kimberlite–picrite province: rock associations and criteria of diamondiferous kimberlites, Materialy V Vserossiiskoi nauchno-prakticheskoi konferentsii s mezhdunarodnym uchastiem, posvyashchennoi 50-letiyu Almaznoi laboratorii TsNIGRI - NIGP AK “ALROSA” (PAO) “Effektivnost’ geologorazvedochnykh rabot na almazy” (Proc. 5th All-Russian Scientific-Practical Conference with International Participance Dedicated to the 50th Anniversary of the Diamond Laboratory of TsNIGRI–Mirnyi NIGP AK “ALROSA” (PAO): Efficiency of Prospecting Works for Diamonds), Mirnyi: ALROSA, 2018, pp. 199–209.

  73. Tretyachenko, V.V., Litological–facies characteristics and paleogeographic conditions of the formation of the Early Carboniferous intermediate reserboirs of the Zimnii Bereg diamond district, Problemy prognozirovaniya i poiskov mestorozhdenii almazov na zakrytykh territoriyakh: materialy konferentsii, posvyashchennoi 40-letiyu YaNIGP TsNIGRI AK “ALROSA” (Problems of Prediction and Prospectings of Diamond Deposits at Closed Territories. Proceeding of Conference Dedicated to the 40th Anniversary of YaNIGP TsNIGRI AK “ALROSA”), Yakutsk: YaNTs SO RAN, 2008a, pp. 125–131.

  74. Vasilenko, V., Zinchuk, N., Krasavchikov, V., et al., Diamond potential estimation based on kimberlite major element chemistry, J. Geochem. Explor., 2002, vol. 76, no. 2, pp. 93–112. https://doi.org/10.1016/S0375-6742(02)00219-4

    Google Scholar 

  75. Verichev, E.M., Garanin, V.K., and Kudryavtseva, G.P., Geology, composition, conditions of formation, and technique of exploration of the Vladimir Grib Kimberlite Pipe, a new diamond deposit, Arkhangelsk Kimberlite Province, Geol. Ore Deposits, 2003, vol. 45, no. 5, pp. 337–361.

    Google Scholar 

  76. Wyatt, B.A., Baumgartner, M., Anckar, E., and Grutter, H., Compositional classification of “kimberlitic” and “non-kimberlitic” ilmenite, Lithos, 2004, vol. 77, nos. 1–4. https://doi.org/10.1016/j.lithos.2004.04.025

  77. Xu, J., Melgarejo, J.C., and Castillo-Oliver, M., Ilmenite as a recorder of kimberlite history from mantle to surface: examples from Indian kimberlites, Mineral. Petrol., 2018, pp. 1–13. https://doi.org/10.1007/s00710-018-0616-5

  78. Yaxley, G.M., Berry, A.J., Rosenthal, A., et al., Redox preconditioning deep cratonic lithosphere for kimberlite genesis-evidence from the central Slave Craton, Sci. Rep., 2017, vol. 7, no. 1, p. 30. https://doi.org/10.1038/s41598-017-00049-3

    Google Scholar 

  79. Zack, T. and Brumm, R., Ilmenite/liquid partition coefficients of 26 trace elements determined through ilmenite/clinopyroxene partitioning in garnet pyroxenites, 7th International Kimberlite Conference, 1998, pp. 986–988 .

  80. Zhang, H.F., Menzies, M.A., Mattey, D.P., et al., Petrology, mineralogy and geochemistry of oxide minerals in polymict xenoliths from the Bultfontein kimberlites, South Africa: implication for low bulk-rock oxygen isotopic ratios, Contrib. Mineral. Petrol., 2001, vol. 141, no. 3, pp. 367–379. https://doi.org/10.1007/s004100100254

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to I.S. Sagaidak, and other colleagues from the Northwestern Regional Fund of Geological Information, Arkhangelsk, for permission and assistance in kimberlite sampling; the corporate management of the Severalmaz OJSC and personally A.S. Galkin, I.S. Zezin for permission to collect kimberlite samples of Arkhangelsk kimberlites and assistance in this. The part of this research was conducted at the Laboratory of Analytical Techniques of High Spatial Resolution, Department of Petrology, Moscow State University. The purchase of the microprobe was financially supported by the Program for Development MSU. Microprobe studies of minerals were assisted by E. Koval’chuk at the IGEM-ANALITIKA Center for Collective Use (IGEM RAS, Moscow). We are grateful to Andrey Girnis and Igor Ashchepkov for their constructive reviews. We thank Irina Nevskaya for efficient editorial handling.

Funding

The study of ilmenite from the Grib kimberlite (Arkhangelsk province) was supported by the Russian Science Foundation (project no. 19-17-00024) and the study of ilmenite from the Kepino kimberlites was supported by the Russian President Grant for State Support of Young Russian Scientists (project no. MK-57.2019.5) to A.K. and E.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kargin.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kargin, A.V., Nosova, A.A., Sazonova, L.V. et al. Ilmenite from the Arkhangelsk Diamond Province, Russia: Composition, Origin and Indicator of Diamondiferous Kimberlites. Petrology 28, 315–337 (2020). https://doi.org/10.1134/S0869591120040050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591120040050

Keywords:

Navigation