Skip to main content
Log in

Influence of the Precipitation Rate on the Isotope (δ18O, δ13C and δ88Sr) Composition of Carbonate Chimneys of the Lost City Hydrothermal Field (30° N, Mid-Atlantic Ridge)

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The behavior of four isotope systems (δ18О, δ13С, δ88Sr and 87Sr/86Sr) during submarine precipitation of inorganic carbonates is considered using the Lost City hydrothermal field as an example of “natural laboratory”. During the carbonate precipitation, the isotope composition, T, and pH of hydrothermal solution change due to mixing of the “end member” Lost City fluid with ocean water. The composition of DIC and carbonates (Cc, Arag) equilibrated with mixed hydrothermal solution was calculated in the isotopic coordinates 87Sr/86Sr–103(Sr/Ca), 87Sr/86Sr–δ18О, 87Sr/86Sr–δ13С, and 87Sr/86Sr–δ88Sr. The observed isotope composition of the Lost City field carbonates is compared with the calculated equilibrium lines. The disequilibrium values of δ18О, δ13С, and δ88Sr in the (Arag) are result of rapid precipitation of carbonates from a hydrothermal fluid under T and pH gradient. The δ18О values of most chimney samples vary around the “DIC–water” equilibrium curve with a slight shift to the Сс(Arag)–water equilibrium. The values of δ13С of chimney carbonates fall between the calculated curves of δ13С (DIC) and equilibrium Сс and Arag. The kinetic isotopic shift Δ88Sr established in chimney carbonates is close to available experimental data on the synthesis of calcite and aragonite from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

Notes

  1. DIC = [CO2]aq + [H2CO3]0 + [HCO3] + [CO3]2–).

  2. It is necessary to note that this shift does not exert significant influence on the results of mixing calculations, where 87Sr/86Sr was used as an indicator of LCF and SW mass fractions. The contribution of 88Sr/86Sr in the measurement error of 87Sr/86Sr is insignificant, since the scale of 87Sr/86Sr variations (in rel %) in the studied samples is over an order of magnitude higher than that of 88Sr/86Sr. For instance, at a maximum shift measured in this work (Δ88Sr(сarb-w) = –0.34‰), a possible shift of 87Sr/86Sr ratio caused by mass-dependent fractionation is as low as –0.0001 (according to Eqs. (19–21) from Young et al., 2002).

REFERENCES

  1. AlKhatib, M. and Eisenhauer, A., Calcium and strontium isotope fractionation in aqueous solutions as a function of temperature and reaction rate; I. Calcite, Geochim. Cosmochim. Acta, 2017a, vol. 209, pp. 296–319.

    Google Scholar 

  2. AlKhatib, M. and Eisenhauer, A., Calcium and strontium isotope fractionation during precipitation from aqueous solutions as a function of temperature and reaction rate; II. Aragonite, Geochim. Cosmochim. Acta, 2017b, vol. 209, pp. 320–342.

    Google Scholar 

  3. Allen, D.E. and Seyfried, W.E., Serpentinization and heat generation: constraints from Lost City and Rainbow hydrothermal systems, Geochim. Cosmochim. Acta, 2004, vol. 68, no. 6, pp. 1347–1354.

    Google Scholar 

  4. Beck, W.C., Grossman, E.L., and Morse, J.W., Experimental studies of oxygen isotope fractionation in the carbonic acid system at 15°, 25°, and 40°C, Geochim. Cosmochim. Acta, 2005, vol. 69, no. 14, pp. 3493–3503.

    Google Scholar 

  5. Böhm, F., Eisenhauer, A., Tang, J., et al., Strontium isotope fractionation of planktic foraminifera and inorganic calcite, Geochim. Cosmochim. Acta, 2012, vol. 93, pp. 300–314.

    Google Scholar 

  6. Bonatti, E., Anomalous opening of the Equatorial Atlantic due to an equatorial mantle thermal minimum, Earth Planet. Sci. Lett., 1996, vol. I43, pp. 147–160.

    Google Scholar 

  7. Boschi, C., Dini, A., Fruh-Green, G.L., and Kelley, D.S., Isotopic and element exchange during serpentinization and metasomatism at the Atlantis Massif (MAR, 30° N): insights from B and Sr isotope data, Geochim. Cosmochim. Acta, 2008, vol. 72, pp. 1801–1823.

    Google Scholar 

  8. Cannat, M., Lagabrielle, Y., Bougault, H., et al., Ultramafic and gabbroic exposures at the Mid-Atlantic Ridge: geologic mapping in the 15° N region, Tectonophysics, 1997, vol. 279 P, pp. 193–213.

  9. Chacko, T. and Deines, P., Theoretical calculation of oxygen isotope fractionation factors in carbonate systems, Geochim. Cosmochim. Acta, 2008, vol. 72, pp. 3642–3660.

    Google Scholar 

  10. Charlier, B.L.A., Nowell, G.M., Parkinson, I.J., et al., High temperature strontium stable isotope behaviour in the early solar system and planetary bodies, Earth Planet. Sci. Lett., 2012, vol. 329-330, pp. 31–40.

    Google Scholar 

  11. Coplen, T.B., Calibration of the calcite–water oxygen–isotope geothermometer at Devils Hole, Nevada, a natural laboratory, Geochim. Cosmochim. Acta, 2007, vol. 71, pp. 3948–3957.

    Google Scholar 

  12. Day, C.C. and Henderson, G.M., Oxygen isotopes in calcite grown under cave-analogue conditions, Geochim. Cosmochim. Acta, 2011, vol. 75, pp. 3956–3972.

    Google Scholar 

  13. Delacour, A., Fruh-Green, G.L., Frank, M., et al., Sr- and Nd-isotope geochemistry of the Atlantis Massif (30° N, MAR): implications for fluid fluxes and lithospheric heterogeneity, Chem. Geol., 2008, vol. 254, nos. 1–2, pp. 19–35.

    Google Scholar 

  14. Devriendt, L.S., Watkins, J.M., and McGregor, H.V., Oxygen isotope fractionation in the CaCO3–DIC–H2O system, Geochim. Cosmochim. Acta, 2017, vol. 214 P, pp. 115–142.

  15. Dietzel, M., Jianwu, T., Leis, A., and Kohler, S.J., Oxygen isotopic fractionation during inorganic calcite precipitation? Effects of temperature, precipitation rate and pH, Chem. Geol., 2009, vol. 268, nos. 1–2, pp. 107–115.

    Google Scholar 

  16. Dubinina, E.O., Chernyshev, I.V., Bortnikov, N.S., et al., Isotopic–geochemical characteristics of the Lost City hydrothermal field, Geochem. Int., 2007, vol. 45, no. 11, pp. 1131–1143.

    Google Scholar 

  17. Dubinina, E.O., Bortnikov, N.S., and Silantyev, S.A., Fluid–rock interaction during seprentinization of oceanic ultramafic rocks hosting the Lost City hydrothermal field, 30° N, MAR, Petrology, 2015, vol. 23, no. 6, pp. 543–558.

    Google Scholar 

  18. Dubinina, E.O., Kossova, S.A., Miroshnikov, A.Yu., and Kokryatskaya, N.M., Isotope (δD, δ18O) systematics in waters of the Russian Arctic seas, Geochem. Int., 2017, vol. 55, no. 11, pp. 1022–1032.

    Google Scholar 

  19. Elderfield, H. and Schultz, A., Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean, Ann. Rev. Eart. Planet. Sci., 1996, vol. 24, pp. 191–224.

    Google Scholar 

  20. Fietzke, J. and Eisenhauer, A., Determination of temperature-dependent stable strontium isotope (88Sr/86Sr) fractionation via bracketing standard MC-ICP-MS, Geochem. Geophys. Geosyst., 2006, vol. 7, no. 8, p. Q08009. https://doi.org/10.1029/2006GC001243

    Google Scholar 

  21. Foustoukos, D.I., Savov, I.P., and Janecky, D.R., Chemical and isotopic constraints on water/rock interactions at the Lost City hydrothermal field, 30° N Mid-Atlantic Ridge, Geochim. Cosmochim. Acta, 2008, vol. 72, pp. 5457–5474.

    Google Scholar 

  22. Früh-Green, G.L., Kelley, D.S., Bernasconi, S.M., et al., 30 000 years of hydrothermal activity at the Lost City vent field, Science, 2003, vol. 301, pp. 495–498.

    Google Scholar 

  23. Früh-Green, G.L., Delacour, A., Boschi, C., et al., Building Lost City: serpentinization, mass transfer and life in a peridotite-hosted hydrothermal system, Geochim. Cosmochim. Acta, 2007, vol. 71, p. A298.

    Google Scholar 

  24. Gabitov, R.I. and Watson, E.B., Partitioning of strontium between calcite and fluid, Geochem., Geophys., Geosyst., 2006, vol. 7, no. 11, p. Q11004.

    Google Scholar 

  25. Gabitov, R.I., Watson, E.B., and Sadekov, A., Oxygen isotope fractionation between calcite and fluid as a function of growth rate and temperature: an in situ study, Chem. Geol., 2012, vol. 306–307, pp. 92–102.

    Google Scholar 

  26. Gaetani, G.A. and Cohen, A.L., Element partitioning during precipitation of aragonite from seawater: a framework for understanding paleoproxies, Geochim. Cosmochim. Acta, 2006, vol. 70, no. 18, pp. 4617–4634.

    Google Scholar 

  27. Karson, J.A., Früh-Green, G.L., Kelley, D.S., et al., Detachment shear zone of the Atlantis Massif core complex, Mid-Atlantic Ridge, 30° N, Geochem., Geophys., Geosyst., 2006, vol. 7, p. Q06016.

    Google Scholar 

  28. Kelley, D.S., Karson, J.A., Blackman, D.K., et al., An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30° N, Nature, 2001, vol. 412, no. 12, pp. 145–149.

    Google Scholar 

  29. Kelley, D.S., Karson, J.A., Früh-Green, G.L., et al., A serpentinite-hosted ecosystem: the Lost City hydrothermal field, Science, 2005, vol. 307, pp. 1428–1434.

    Google Scholar 

  30. Kim, S.-T. and O’Neil, J.R., Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates, Geochim. Cosmochim. Acta, 1997, vol. 61, no. 16, pp. 3461–3475.

    Google Scholar 

  31. Kim, S.T., O’Neil, J.R., Hillaire-Marcel, C., and Mucci, A., Oxygen isotope fractionation between synthetic aragonite and water: influence of temperature and Mg2+ concentration, Geochim. Cosmochim. Acta, 2007, vol. 71, pp. 4704–4715.

    Google Scholar 

  32. Kinsman, D.J.J. and Holland, H.D., The coprecipitation of cations with CaCO3—IV. The coprecipitation of Sr+2 with aragonite between 16o and 96o, Geochim. Cosmochim. Acta, 1969, vol. 33, pp. 1–17.

    Google Scholar 

  33. Krabbenhöft, A., Eisenhauer, A., Bohm, F., et al., Constraining the marine strontium budget with natural strontium isotope fractionations (87Sr/86Sr*, δ 88/86Sr) of carbonates, hydrothermal solutions and river waters, Geochim. Cosmochim. Acta, 2010, vol. 74, no. 14, pp. 4097–4109.

    Google Scholar 

  34. Kramchaninov, A.Yu., Chernyshev, I.V., and Shatagin, K.N., Strontium isotope analysis with ionization and inductively coupled plasma multicolector mass spectrometry: high-precision joint measurement of 88Sr/86Sr and 87Sr/86Sr ratio, Mass-spektrometriya, 2012, vol. 9, no. 2, pp. 129–138.

    Google Scholar 

  35. Kroopnick, P.M., The distribution of 13C of ΣCO2 in the world oceans, Deep-Sea Res., 1985, vol. 32, no. 1, pp. 57–84.

    Google Scholar 

  36. Lang, S.Q., Früh-Green, G.L., Bernasconi, S.M., et al., Microbial utilization of abiogenic carbon and hydrogen in a serpentinite-hosted system, Geochim. Cosmochim. Acta, 2012, vol. 92, pp. 82–99.

    Google Scholar 

  37. Lein, A.Yu., Bogdanov, Yu.A., Sagalevich, A.M., et al., A new type of hydrothermal field in the Mid-Atlantic Ridge (Lost City Field, 30° N), Dokl. Earth Sci., 2004, vol. 394, no. 3, pp. 92–95.

    Google Scholar 

  38. Liu, H.C., You, C.F., Huang, K.F., and Chung, C.H., Precise determination of triple Sr isotopes (δ87Sr and δ88Sr) using MC-ICP-MS, Talanta, 2012, vol. 88, pp. 338–344.

    Google Scholar 

  39. Ludwig, K.A., Kelley, D.S., Butterfield, D.A., et al., Formation and evolution of carbonate chimneys at the Lost City hydrothermal field, Geochim. Cosmochim. Acta, 2006, vol. 70, no. 14, pp. 3625–3645.

    Google Scholar 

  40. Millero, F.J., Graham, T.B., Huang, F., et al., Dissociation constants of carbonic acid in seawater as a function of salinity and temperature, Mar. Chem., 2006, vol. 100, nos. 1–2, pp. 80–94.

    Google Scholar 

  41. NOAA Repository. 2005. https://www.nodc.noaa.gov/

  42. Ohmoto, H. and Rye, R.O., Isotope of sulfur and carbon, Geochemestry of Hydrothermal Deposits, H.L. Barnes, Eds., New York: John Wiley & Sons, 1979.

    Google Scholar 

  43. Ohno, T. and Hirata, T., Simultaneous determination of mass-dependent isotopic fractionation and radiogenic isotope variation of strontium in geochemical samples by multiple collector-ICP-mass spectrometry, Anal. Sci., 2007, vol. 23, pp. 1275–1280.

    Google Scholar 

  44. Palandri, J.L. and Reed, M.H., Geochemical models of metasomatism in ultramafic systems: serpentinization, rodingitization, and sea floor carbonate chimney precipitation, Geochim. Cosmochim. Acta, 2004, vol. 68, no. 5, pp. 1115–1133.

    Google Scholar 

  45. Popov, N.I., Fedorov, K.N., and Orlov, V.M., Morskaya voda. Spravochnoe rukovodstvo (Seawater. A Textbook), Moscow: Nauka, 1979.

  46. Proskurowski, G., Lilley, M.D., Kelley, D.S., et al., Low temperature volatile production at the lost city hydrothermal field, evidence from a hydrogen stable isotope geothermometer, Chem. Geol., 2006, vol. 229, pp. 331–343.

    Google Scholar 

  47. Proskurowski, G., Lilley, M.D., Seewald, J.S., et al., Abiogenic hydrocarbon production at lost city hydrothermal field, Science, 2008, vol. 319, pp. 604–607.

    Google Scholar 

  48. Raczek, I., Jochum, K.P., and Hofmann, A.W., Neodymium and strontium isotope data for USGS reference materials BCR-1, BCR-2, BHVO-1, BHVO-2, AGV-1, AGV-2, GSP-1, GSP-2 and eight MPI-DING reference glasses, Geostand. Newslett. J. Geostand. Geoanal., 2003, vol. 27, no. 2, pp. 173–179.

    Google Scholar 

  49. Romanek, C., Grossman, E., and Morse, J., Carbon isotopic fractionation in synthetic calcite, effects of temperature and precipitation rate, Geochim. Cosmochim. Acta, 1992, vol. 56, pp. 419–430.

    Google Scholar 

  50. Shanks, W.S., Stable isotopes in seafloor hydrothermal systems: vent fluids, hydrothermal deposits, hydrothermal alteration, and microbial processes, Stable Isotope Geochemistry.Rev. Mineral., Valley, J.W. and Cole, D.R., Eds., 2001, vol. 43, pp. 469–525.

    Google Scholar 

  51. Silantyev, S.A., Novoselov, A.A., and Mironenko, M.V., hydrothermal systems in peridotites at slow-spreading ridges. modeling phase transformations and material balance: role of gabbroids, Petrology, 2011, vol. 19, no. 3, pp. 217–236.

    Google Scholar 

  52. Silantyev, S.A., Kubrakova, I.V., and Tyutyunnik, O.A., Distribution of siderophile and chalcophile elements in serpentinites of the oceanic lithosphere as an insight into the magmatic and crustal evolution of mantle peridotites, Geochem. Int., 2016, vol. 54, no. 12, pp. 1019–1034.

    Google Scholar 

  53. Teagle, D.A.H., Alt, J.C., and Halliday, A.N., Tracing the chemical evolution of fluids during hydrothermal recharge: constraints from anhydrite recovered in ODP Hole 504b, Earth. Planet. Sci. Lett., 1998, vol. 155, pp. 167–182.

    Google Scholar 

  54. Turekian, K.K. and Wedepohl, K.H., Distribution of the elements in some major units of the earth’s crust, Geology, 1961, vol. 72, pp. 175–182.

    Google Scholar 

  55. Watkins, J.M., Hunt, J.D., Ryerson, F.J., and De Paolo, D.J., The infuence of temperature, pH, and growth rate on the δ18O composition of inorganically precipitated calcite, Earth. Planet. Sci. Lett., 2014, vol. 404, pp. 332–343.

    Google Scholar 

  56. Watson, E.B., A conceptual model for near-surface kinetic controls on the trace-element and stable isotope composition of abiogenic calcite crystals, Geochim. Cosmochim. Acta, 2004, vol. 68, no. 7, pp. 1473–1488. www.nodc.noaa. gov/

    Google Scholar 

  57. Zeebe, R.E., An explanation of the effect of seawater carbonate concentration on foraminiferal oxygen isotopes, Geochim. Cosmochim. Acta, 1999, vol. 63, pp. 2001–2007.

    Google Scholar 

  58. Zeebe, R.E., An expression for the overall oxygen isotope fractionation between the sum of dissolved inorganic carbon and water, Geochem. Geophys. Geosyst., 2007, vol. 8, no. 9, p. Q09002. https://doi.org/10.1029/2007GC001663

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to reviewers for critical comments that improved our manuscript.

Funding

This work was performed in the framework of State Task (project no. 0136-2019-0013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. O. Dubinina.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubinina, E.O., Kramchaninov, A.Y., Silantyev, S.A. et al. Influence of the Precipitation Rate on the Isotope (δ18O, δ13C and δ88Sr) Composition of Carbonate Chimneys of the Lost City Hydrothermal Field (30° N, Mid-Atlantic Ridge). Petrology 28, 374–388 (2020). https://doi.org/10.1134/S0869591120040037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591120040037

Keywords:

Navigation