Skip to main content
Log in

The Tephra of the 1669 Etna, Sicily Eruption: The Petrologic, Mineralogical, Geochemical Properties, and the Geodynamic Aspect

  • Published:
Journal of Volcanology and Seismology Aims and scope Submit manuscript

Abstract

This paper reports the first multidisciplinary petrologic, mineralogical, and geochemical studies of the near-crater tephra discharged by the 1669 catastrophic eruption of Etna stratovolcano, Sicily. We studied the grain-size distribution, chemical and mineral-phase composition of the tephra. We determined the composition of trace elements and the composition of encapsulated lithogenic gases. Etna is classified as an intraplate volcano with a deep-seated magma chamber. Of special importance is the fact that the Etnean products were found to contain volcanogenic organoids that have phase, elemental, and isotope compositions similar to the organoids encountered in diamond-bearing products discharged by some Kamchatka volcanoes. This corroborates out earlier inference that carbonaceous abiogenesis is ubiquitous in the conditions of onshore volcanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

Notes

  1. For comparison: the AD79 eruption of Vesuvius killed roughly two thousand people.

REFERENCES

  1. Barsukov, V.L., Nazarov, M.A., and Tarasov, L.S., The mineralogy of lunar material, Zapiski VMO, 1979, Part 108, no. 1, pp. 3–14.

    Google Scholar 

  2. Ben Avraham, Z., Boccaletti, M., Cello, G., Grasso, M., Lentini, F., Torelli, L., and Tortorici, L., Principali domini strutturali originatisi dalla collisione neogenico-quaternaria nel Mediterraneo central, Mem. Soc. Geol. Ital., 1990, vol. 45, pp. 453–462.

    Google Scholar 

  3. Boynton, W.V., Geochemistry of the rare earth elements: Meteorite studies, in Rare Earth Element Geochemistry, Amsterdam: Elsevier, 1984, pp. 63–114.

    Google Scholar 

  4. Branca, S., Coltelli, M., Groppelli, G., and Lentini, F., Geological map of Etna volcano, 1:50000 scale, Italian Journal of Geosciences, 2011a, vol. 130(3), pp. 265–291. https://doi.org/10.3301/IJG.2011.15

  5. Branca, S., Coltelli, M., and Groppelli, G., Geological evolution of a complex basaltic stratovolcano: Mount Etna, Italy, Italian Journal of Geosciences, 2011b, vol. 130(3), pp. 306–317. https://doi.org/10.3301/IJG.2011.13

    Article  Google Scholar 

  6. Cartigny, P., Stable isotopes and the origin of diamond, Elements, 2005, vol. 1, pp. 79–84.

    Article  Google Scholar 

  7. Chironi, C., De Luca, L., Guerra, I., et al., Sea land group crustal structures of the Southern Tyrrhenian Sea and Sicily Channel on the basis of the M25, M26, M28, M39, WARR profiles, Bull. Della Soc. Geol. Italy, 2000, vol. 119, pp. 189–203.

    Google Scholar 

  8. Correale, A., Scribano, V., and Paonita, A.A., Volcanological paradox in a thin-section: Large explosive eruptions of high-Mg magmas explained through a vein of silicate glass in a serpentinized peridotite xenolith (Hyblean area, Sicily), Geosciences (MDPI), 2019, vol. 9, pp. 150. https://doi.org/10.3390/geosciences9040150

    Article  Google Scholar 

  9. Corsaro, R.A., Cristofolini, R., and Patanè, L., The 1669 eruption at Mount Etna: chronology, petrology and geochemistry, with inferences on the magma sources and ascent mechanisms, Bull. Volcanol., 1996, vol. 58, pp. 348–358.

    Article  Google Scholar 

  10. De Beni, E., Branca, S., Coltelli, M., et al., 39Ar/40Ar isotopic dating of Etna volcanic succession, Italian Journal of Geosciences, 2011, vol. 130(3), pp. 292–305. https://doi.org/10.3301/IJG.2011.14

    Article  Google Scholar 

  11. Encyclopedia of Volcanoes, Sigurdsson, H., Houghton, B., Rymer H., Stix, J., and McNutt, S., Eds.,. Academic Press, 1999, pp. 1172–1177.

  12. Finetti, I., Structure, stratigraphy and evolution of central Mediterranean, Bull. Di Geofis. Teor. e Appl., 1982, vol. 24, pp. 247–312.

    Google Scholar 

  13. Giampiccolo, E., Brancato, A., Manuella, F.C., et al., New evidence for the serpentinization of the Palaeozoic basement of southeastern Sicily from joint 3D seismic velocity and attenuation tomography, Geophys. J. Int., 2017, vol. 211, pp. 1375–1395.

    Article  Google Scholar 

  14. Guest, J.E., Styles of eruption and flow morphology on Mt. Etna, Memorie Società Geologica Italiana, 1982, vol. 23, pp. 49‒73.

    Google Scholar 

  15. Humbert, F., de Kock, M.O., Lenhardt, N., and Altermann, W., Neoarchaean to Early Palaeoproterozoic within-plate volcanism of the Kaapvaal Craton: Comparing the Venters-dorp Supergroup and Ongeluk and Hekpoort Formations (Tranvaal Supergroup), in The Archaean Geology of the Kaapval Craton, Sonthern Africa, Springer Nature Switzerland AG, 2019, pp. 277–302.

  16. Karpov, G.A., Silaev, V.I., Anikin, L.P., et al., Explosive mineralization, in Tolbachinskoe treshchinnoe izverzhenie 2012–2013 gg. (The Tolbachik Fissure Eruption of 2012–2013), Novosibirsk: SO RAN, 2017, pp. 241–255.

  17. Manuella, F.C., Scribano, V., Carbone, S., and Brancato, A., The Hyblean xenolith suite (Sicily): an unexpected legacy of the Ionian–Tethys realm, Int. J. Earth Sci. (GR Geologische Rundschau), 2015, vol. 104, pp. 317–1336.

    Google Scholar 

  18. Petrovsky, V.A., Silaev, V.I., Sukharev, A.E., et al., Fluid phases in carbonado and their genetic significance, Geochemistry International, 2008, vol. 46, no. 7, pp. 693–710.

    Article  Google Scholar 

  19. Romano, R., Succession of the volcanic activity in the Etnean area, Memorie Società Geologica Italiana, 1982, vol. 23, pp. 27–48.

    Google Scholar 

  20. Scribano, V., Sapienza G., Braga, R., and Morten, L., Gabbroic xenoliths in tuff-breccia pipes from the Hyblean Plateau: Insights into the nature and composition of the lower crust underneath Southeastern Sicily, Italy, Miner. Pet., 2006a, vol. 86, pp. 63–88.

    Article  Google Scholar 

  21. Scribano, V., Ioppolo, S., and Censi, P., Chlorite/smectite-alkali feldspar metasomatic xenoliths from Hyblean Miocenic diatremes (Sicily, Italy): Evidence for early interaction between hydrothermal brines and ultramafic/mafic rocks at crustal levels, Ofioliti, 2006b, vol. 31, pp. 161–171.

    Google Scholar 

  22. Silaev, V.I., Lyutoev, V.P., Petrovsky, V.A., and Khazov, A.F., A study of naturally occurring carbonaceous substances and some of their synthetic analogues by the method of Raman spectroscopy, Mineralog. Zhurn., 2013, vol. 35, no. 3, pp. 33–47.

    Google Scholar 

  23. Silaev, V.I., Proskurnin, V.F., Gavrish, A.V., et al., A carbonatite assemblage of unusual rocks and mineralizations in eastern Taimyr, in Problemy mineralogii petrografii i metallogenii (Problems in Mineralogy, Petrography, and metallogeny), Issue 19, Perm, 2016, pp. 119–136.

  24. Silaev, V.I., Anikin, L.P., Shanina, S.N., et al., Abiogennye kondensirovannye organicheskie polimery v produktakh sovremennogo vulkanizma v svyazi s problemoi vozniknoveniya zhizni na Zemle (Abiogenic Condensed Organic Polymers in Ejecta of Recent Volcanism in Relation to the Origin of Life on Earth), Syktyvkar: Geoprint, 2018a.

  25. Silaev, V., Anikin, L., Petrovsky, V., and Karpov, G., A biogenic organ polymers in products of modern volcanism, Ural. Geol. Zhurn., 2018b, no. 3, pp. 40–51.

  26. Silaev, V.I., Karpov, G.A., Anikin, L.P., Vasiliev, E.A., Vergasova, L.P., and Smoleva, I.V., Mineral phase paragenesis in explosive ejecta discharged by recent eruptions in Kamchatka and the Kuril Islands. Part 1. Diamonds, carbonaceous phases, and condensed organoids, J. Volcanol. Seismol., 2019a, vol. 13, no. 5, pp. 323–334.

    Article  Google Scholar 

  27. Silaev, V.I., Karpov, G.A., Anikin, L.P., Vergasova, L.P., Filippov, V.N., and Tarasov, K.V., Mineral Phase Paragenesis in Explosive Ejecta Discharged by Recent Eruptions in Kamchatka and on the Kuril Islands. Part 2. Accessory Minerals of the Tolbachik Type Diamonds, J. Volcanol. Seismol., 2019b, vol. 13, no. 6, pp. 376–388.

    Article  Google Scholar 

  28. Silaev, V.I., Proskurnin, V.F., Golubeva, I.I., et al., Penolites: A new type of endogenous rock, Belkovsky Island, Russia, Vestnik Perm. Univers., Geologiya, 2019, vol. 18, no. 2, pp. 125–147.

    Google Scholar 

  29. Svyatlovsky, A.E. and Kitaigorodsky, Yu.I., Geodinamicheskaya vulkanologiya (Geodynamic Volcanology), Moscow: Nedra, 1988.

  30. Tarasov, L.S., Nazarov, M.A., Shevallevsky, I.D., et al., Rock petrography and the composition of regolith minerals from Mare Crisium, in Lunnyi grunt iz Morya Krizisov (Lunar Soil from Mare Crisium), Moscow: Nauka, 1980, pp. 78–95.

  31. Taylor, S.R. and McLennan, S.M., The Continental Crust: Its Composition and Evolution, Blackwell Scientif. Publs., Oxford, 1985.

    Google Scholar 

  32. Tazieff, H., Erebus: Volcan antarctique, Arthaud, 1978.

    Google Scholar 

  33. Tonarini, S., D’Orazio, M., Armenti, P., et al., Geochemical features of Eastern Sicily lithosphere as probed by Hyblean xenoliths and lavas, Eur. J. Mineral., 1996, vol. 8, pp. 1153–1173

    Article  Google Scholar 

  34. Vai, G.B., Crustal evolution and basement elements in the Italian area: Palaeogeography and characterization, Bull. Geofis. Teor. Appl., 1994, vol. 36, pp. 141–144.

    Google Scholar 

  35. Vai, G.B., Development of the palaeogeography of Pangaea from Late Carboniferous to Early Permian, Palaeogeogr. Palaeoclim. Palaeoecol., 2003, vol. 196, pp. 125–155.

    Article  Google Scholar 

  36. Voitkevich, G.V., Kokin, A.V., Miroshnikov, A.E., and Prokhorov, V.G., Spravochnik po geokhimii (A Handbook of Geochemistry), Moscow: Nedra, 1990.

  37. Wood, D.A., The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province, Earth Planet. Sci. Lett., 1980, vol. 50, pp. 11–30.

    Article  Google Scholar 

Download references

Funding

The ICP-MS trace element analysis was performed at the Geoanalitik TsKP UrO RAN for the research topic no. AAAA-A18-118053090045-8 of the State Assignment at the Institute of Geology and Geochemistry, Ural Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. I. Silaev, G. A. Karpov, D. N. Remizov or D. V. Kiseleva.

Additional information

Translated by A. Petrosyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silaev, V.I., Karpov, G.A., Anikin, L.P. et al. The Tephra of the 1669 Etna, Sicily Eruption: The Petrologic, Mineralogical, Geochemical Properties, and the Geodynamic Aspect. J. Volcanolog. Seismol. 15, 180–200 (2021). https://doi.org/10.1134/S0742046321020056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0742046321020056

Keywords:

Navigation