Skip to main content
Log in

Earth Strain and Acoustic Monitoring of Geodynamic Processes in Seismic and Aseismic Zones Using Highly Sensitive, Spatially Separated Instruments

  • Published:
Journal of Volcanology and Seismology Aims and scope Submit manuscript

Abstract

This paper reports results from observations of broadband geophysical processes using laser interferometer strainmeters and special acoustic instruments. We demonstrate examples of synchronous recordings of earth strain variations and geoacoustic oscillations of the ground surface in Kamchatka and in the Moscow Region, as well as results from a parallel analysis of these data, showing that the method proposed here can be used to separate local and global disturbances in these processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Abbott, B.P., Abbott, R., Abbott, T.D., et al., Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett., 2016, vol. 116, no. 6, pp. 061102.

    Article  Google Scholar 

  2. Aleksandrov, D.V., The operation of the three-mirror interferometer and its use for recording ground surface movements, Nelineinyi Mir, 2012, no. 2, pp. 114‒115.

  3. Aleksandrov, D.V., Kravtsov, V.V., and Larionov, I.A., Preliminary results from the testing of a three-mirror laser interferometer at the Kamchatka Geosite, in Lazery, izmereniya, informatsiya (Lasers, Measurements, Information), Proc. 23rd Intern. conf., June 5–6, 2012, St. Petersburg, 2013, p. 105.

  4. Aleksandrov, D.V., Kravtsov, V.V., and Dubnov, M.N., A study of the operation of controllable laser interferometers at long baselines, Nelineinyi Mir, 2015, vol. 13, no. 2, pp. 5‒6.

    Google Scholar 

  5. Aleksandrov, D.V., Kravtsov, V.V., and Dubrov, M.N., Results from the testing of laser strainmeter interferometers at the Fryazino Optical-Line Test Site, Nelineinyi Mir, 2018, no. 2, pp. 44‒46.

  6. Amoruso, A., Crescentini, L., Bayo, A., et al., Two high-sensitivity laser strainmeters installed in the Canfranc Underground Laboratory (Spain): Instrument features from 100 to 0.001 mHz, Pure and Applied Geophysics, 2018, vol. 175, no. 5, pp. 1727–1737.

    Article  Google Scholar 

  7. Barbour, A.J. and Agnew, D.C., Detection of seismic signals using seismometers and strainmeters, Bulletin of the Seismological Society of America, 2012, vol.102, no. 6, pp. 2484‒2490.

    Article  Google Scholar 

  8. Dolgikh, G.I., Issledovanie volnovykh polei okeana i litosfery lazerno-interferentsionnymi metodami (The Study of Wave Fields in the Ocean and Lithosphere Using Laser Interference Methods), Vladivostok: Dal’nauka, 2000.

  9. Dolgikh, G.I., Principles for the design of one-coordinate laser strainmeters, Pis’ma v ZhTF, 2011, vol. 37, no. 5, pp. 24‒30.

    Google Scholar 

  10. Dubrov. M.N. and Matveev, R.F., Development and study of multicomponent geophysical laser interferometer-deformograph J Commun. Technol. Electron. (Journal of Communications Technology and Electronics) 1998, Vol 43, no 9, pp. 1068–1073.

  11. Dubrov, M.N. and Smirnov, V.M., Interdependent perturbations of the Earth’s surface, atmosphere, and ionosphere Geomagnetism and Aeronomy, 2013, Vol. 53, No. 1, pp. 49–59. © Pleiades Publishing, Ltd., 2013.

  12. Dubrov, M.N., Yakovlev, A.P., and Aleshin, V.A., On relationships between high frequency microseismic strain and the stress in the lithosphere, Dokl. Akad. Nauk SSSR, 1987, vol. 293, no. 5, pp. 1085‒1089.

    Google Scholar 

  13. Dubrov, M.N., Alyoshin, V.A., and Yakovlev, A.P., Wideband laser strainmeters as a new instrument for geophysical research, Gerlands Beitr. Geophysik, Leipzig, 1989, vol. 98(4), pp. 292–300. ISSN: 0016-8696.

  14. Dubrov, M.N., Aleksandrov, D.V., and Kravtsov, V.V., Laser strainmeter interferometers: New desings and applications, Electronnyi Zhurnal Issledovano v Rossii, 2013, no. 025, pp. 354‒359. URL http://cplire.ru: 8080/6260/1/zhurnal_article_2013_025.pdf (application date: October 15, 2018)

  15. Dubrov, M.N., Volkov, V.A., and Golovachev, S.P., Earthquake and hurricane coupling is ascertained by ground-based laser interferometer and satellite observing techniques, Nat. Hazards Earth Syst. Sci. Discus., 2014, vol. 2(1), pp. 935–961. (Discussion part of the Interactive Open Access Journal of EGU). https://doi.org/10.5194/nhessd-2-935-2014

  16. Dubrov, M.N., Lukanenkov, A.V., and Nikolaev, A.V., Perspectives in the development of seismic monitoring, in Fizika yadernogo vzryva (The Physics of Nuclear Detonations), vol. 5 Kontrol’ yadernykh ispytanii (Verification of Nuclear Test Detonations), Loborev, V.M., et al., Eds., Moscow: Fizmatlit, 2017, pp. 161–185.

  17. Golovachev, S.P., Dubrov, M.N., and Volkov, V.A., The interaction between the tropical cyclogenesis and seismic activity as derived from spacecraft and ground-based measuring systems, Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa (Actual Problems in Remote Sensing of the Earth from Space), 2011, vol. 8, no. 1, pp. 232‒238.

  18. Harrop, N. and Attenborough, K., Laser-Doppler vibrometer measurements of acoustic-to-seismic coupling in unconsolidated soils, Applied Acoustics, 2002, vol. 63, no. 4, pp. 419‒429.

    Article  Google Scholar 

  19. Karmaleyeva, R.M., Latynina, L.A., and Savarensky, E.F., On the observation of long-period waves with quartz extensometers, Pure and Applied Geophysics, 1970, vol. 82, no. 1, pp. 85‒97.

    Article  Google Scholar 

  20. Komarov, I.I., Sineva, Z.I., Mikhailova, N.N., and Abdrakhmanova, G.S., A model for seismic noise based on observations at the Makanchi Geophysical Observatory, in Vestnik NYaTs RK, Geofizika i problemy nerasprostraneniya (Geophysics and Non-Proliferation Problems), 2000, no. 2, pp. 17–23.

  21. Larionov, I.A. and Nepomnyashchii, Yu.A., Geostrain measurements in near-surface sedimentary rocks, Vestnik KRAUNTs, Fiz.-Mat. Nauki, 2016, no. 3(14), pp. 85‒90.

  22. Marapulets, Yu.V., Shevtsov, B.M., Larionov, I.A., et al., The response of geoacoustic emission to resumption of strain processes during the precursory periods of earthquakes, Tikhookean. Geol., 2012, vol. 31, pp. 59‒67.

    Google Scholar 

  23. Nikolaev, A.V., Lukanenko, A.V., and Dubrov, M.N., New possibilities of combined data processing from recording of displacements and strains in the field of seismic waves, Doklady Earth Sciences, 2010, Vol. 430, Part 2, pp. 258–260. © Pleiades Publishing, Ltd., 2010.

  24. Shcherbina, A.O., Mishchenko, M.A., and Larionov, I.A., An instrument–software unit for monitoring geoacoustic emission, Vestnik KRAUNTs, Nauki o Zemle, 2005, no. 2(6), pp. 128‒132.

  25. Sobolev, G.A., Seismicity dynamics and earthquake predictability, Nat. Hazards Earth Syst. Sci., 2011, no. 11, pp. 445–458.https://doi.org/10.5194/nhess-11-445-2011

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Dubrov.

Additional information

Translated by A. Petrosyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleksandrov, D.V., Dubrov, M.N., Larionov, I.A. et al. Earth Strain and Acoustic Monitoring of Geodynamic Processes in Seismic and Aseismic Zones Using Highly Sensitive, Spatially Separated Instruments. J. Volcanolog. Seismol. 13, 193–200 (2019). https://doi.org/10.1134/S0742046319030023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0742046319030023

Navigation