Skip to main content
Log in

Central Autonomic Network

  • REVIEWS
  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The review analyzes data on the connections and functions of the structures of the central nervous system that form the central autonomic network (CAN), namely the prefrontal cortex, the extended amygdala, the hypothalamus, the central gray matter, the nucleus of the solitary tract, and the ventrolateral region of the medulla oblongata. We consider main properties of the CAN, such as morphological and neurochemical complexity, the presence of several outputs, and state-dependence. It is concluded that the main, but not the only function of the CAN is to maintain homeostasis in the current and predicted behavioral context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Benarroch, E.E., The central autonomic network: functional organization, dysfunction, and perspective, Mayo Clin. Proc., 1993, vol. 68, no. 10, p. 988.

    Article  CAS  Google Scholar 

  2. Cersosimo, M.G. and Benarroch, E.E., Central control of autonomic function and involvement in neurodegenerative disorders, Handb. Clin. Neurol., 2013, vol. 117, p. 45.

    Article  Google Scholar 

  3. Coon, E.A., Cutsforth-Gregory, J.K., and Benar-roch, E.E., Neuropathology of autonomic dysfunction in synucleinopathies, Mov. Disord., 2018, vol. 33, no. 3, p. 349.

    Article  Google Scholar 

  4. Lamotte, G., Shouman, K., and Benarroch, E.E., Stress and central autonomic network, Auton. Neurosci., 2021, vol. 235, p. 102870.

    Article  Google Scholar 

  5. Macey, P.M., Ogren, J.A., Kumar, R., and Harper, R.M., Functional imaging of autonomic regulation: methods and key findings, Front. Neurosci., 2016, vol. 9, p. 513.

    Article  Google Scholar 

  6. Sklerov, M., Dayan, E., and Browner, N., Functional neuroimaging of the central autonomic network: recent developments and clinical implications, Clin. Auton. Res., 2019, vol. 29, no. 6, p. 555.

    Article  Google Scholar 

  7. Smith, R., Thayer, J.F., Khalsa, S.S., and Lane, R.D., The hierarchical basis of neurovisceral integration, Neurosci. Biobehav. Rev., 2017, vol. 75, p. 274.

    Article  Google Scholar 

  8. Aleksandrov, V.G., Kokurina, T.N., Rybakova, G.I., and Tumanova, T.S., Autonomic functions of the prefrontal cortex, Hum. Physiol., 2021, vol. 47, no. 5, p. 571.

    Article  Google Scholar 

  9. Hurley, M., Herbert, H., Moga, M.M., and Saper, C.B., Efferent projections of the infralimbic cortex of the rat, J. Comp. Neurol., 1991, vol. 308, no. 2, p. 249.

    Article  CAS  Google Scholar 

  10. Fisk, G.D. and Wyss, J.M., Descending projections of infralimbic cortex that mediate stimulation-evoked changes in arterial pressure, Brain Res., 2000, vol. 859, no. 1, p. 83.

    Article  CAS  Google Scholar 

  11. Joyce, M.K.P. and Barbas, H., Cortical connections position primate area 25 as a keystone for interoception, emotion, and memory, J. Neurosci., 2018, vol. 38, no. 7, p. 1677.

    Article  CAS  Google Scholar 

  12. Zimmermann, K.S., Richardson, R., and Baker, K.D., Maturational changes in prefrontal and amygdala circuits in adolescence: implications for understanding fear inhibition during a vulnerable period of development, Brain Sci., 2019, vol. 9, no. 3, p. 65.

    Article  CAS  Google Scholar 

  13. Yasui, Y., Breder, C.D., Saper, C.B., and Cechetto, D.F., Autonomic responses and efferent pathways from the insular cortex in the rat, J. Comp. Neurol., 1991, vol. 303, no. 3, p. 355.

    Article  CAS  Google Scholar 

  14. Cechetto, D.F. and Chen, S.J., Hypothalamic and cortical sympathetic responses relay in the medulla of the rat, Am. J. Physiol., 1992, no. 263, p. 544.

  15. Floyd, N.S., Price, J.L., Ferry, A., et al., Orbitomedial prefrontal cortical projections to hypothalamus in the rat, J. Comp. Neurol., 2001, vol. 432, no. 3, p. 307.

    Article  CAS  Google Scholar 

  16. Gabbot, P.L.A., Warner, T.A., Jays, P.R.L., et al., Prefrontal cortex in the rat: projections to subcortical, motor, and limbic centers, J. Comp. Neurol., 2005, vol. 492, no. 2. P.145.

    Article  Google Scholar 

  17. Averbeck, B.B. and Murray, E.A., Hypothalamic interactions with large-scale neural circuits underlying reinforcement learning and motivated behavior, Trends Neurosci., 2020, vol. 43, no. 9, p. 681.

    Article  CAS  Google Scholar 

  18. van der Kooy, D., Koda, L.Y., McGinty, J.F., et al., The organization of projections from the cortex, amygdala, and hypothalamus to the nucleus of the solitary tract in rat, J. Comp. Neurol., 1984, vol. 224, no. 1, p. 1.

    Article  CAS  Google Scholar 

  19. Terreberry, R.R. and Neafsey, E.J., The rat medial frontal cortex projects directly to autonomic regions of the brainstem, Brain Res. Bull., 1987, vol. 19, no. 6, p. 639.

    Article  CAS  Google Scholar 

  20. Gasparini, S., Howland, J.M., Thatcher, A.J., and Geerling, J.C., Central afferents to the nucleus of the solitary tract in rats and mice, J. Comp. Neurol., 2020, vol. 528, no. 16, p. 2708.

    Article  CAS  Google Scholar 

  21. Bagaev, V. and Aleksandrov, V., Visceral-related area in the rat insular cortex, Auton. Neurosci., 2006, vol. 125, nos. 1–2, p. 16.

    Article  CAS  Google Scholar 

  22. Verbern, A.J.M., Modulation of autonomic function by the cerebral cortex, in Central Regulation of Autonomic Functions, Oxford: Oxford University Press, 2011, p. 202.

    Google Scholar 

  23. Hammack, S.E., Braas, K.M., and May, V., Chemoarchitecture of the bed nucleus of the stria terminalis: neurophenotypic diversity and function, Handb. Clin. Neurol., 2021, vol. 179, p. 385.

    Article  Google Scholar 

  24. Quadt, L., Critchley, H., and Nagai, Y., Cognition, emotion, and the central autonomic network, Auton. Neurosci., 2022, vol. 238, p. 102948.

    Article  Google Scholar 

  25. Sarhan, M., Freund-Mercier, M.J., and Veinante, P., Branching patterns of parabrachial neurons projecting to the central extended amgydala: single axonal reconstructions, J. Comp. Neurol., 2005, vol. 491, no. 4, p. 418.

    Article  Google Scholar 

  26. Tokita, K., Inoue, T., and Boughter, J.D., Jr., Subnuclear organization of parabrachial efferents to the thalamus, amygdala and lateral hypothalamus in C57BL/6J mice: a quantitative retrograde double labeling study, Neuroscience, 2010, vol. 171, no. 1, p. 351.

    Article  CAS  Google Scholar 

  27. Ye, J. and Veinante, P., Cell-type specific parallel circuits in the bed nucleus of the stria terminalis and the central nucleus of the amygdala of the mouse, Brain Struct. Funct., 2019, vol. 224, no. 3, p. 1067.

    Article  CAS  Google Scholar 

  28. Jaramillo, A.A., Brown, J.A., and Winder, D.G., Danger and distress: parabrachial-extended amygdala circuits, Neuropharmacology, 2021, vol. 198, p. 108757.

    Article  CAS  Google Scholar 

  29. Boucher, M.N., Aktar, M., Braas, K.M., et al., Activation of lateral parabrachial nucleus (LPBn) PACAP-expressing projection neurons to the bed nucleus of the stria terminalis (BNST) enhances anxiety-like behavior, J. Mol. Neurosci., 2022, vol. 72, no. 3, p. 451.

    Article  CAS  Google Scholar 

  30. Sladek, C.D., Michelini, L.C., Stachenfeld, N.S., et al., Endocrine-autonomic linkages, Compr. Physiol., 2015, vol. 5, no. 3, p. 1281.

    Article  Google Scholar 

  31. Pyner, S., The heart is lost without the hypothalamus, Handb. Clin. Neurol., 2021, vol. 182, p. 355.

    Article  Google Scholar 

  32. Savić, B., Murphy, D., and Japundžić-Žigon, N., The paraventricular nucleus of the hypothalamus in control of blood pressure and blood pressure variability, Front. Physiol., 2022, vol. 13, p. 858941

    Article  Google Scholar 

  33. Herman, J.P., Neural pathways of stress integration: relevance to alcohol abuse, Alcohol Res., 2012, vol. 34, no. 4, p. 441.

    Google Scholar 

  34. Nakamura, K. and Morrison, S.F., Central sympathetic network for thermoregulatory responses to psychological stress, Auton. Neurosci., 2022, vol. 237, p. 102918.

    Article  CAS  Google Scholar 

  35. Venkatraman, A., Edlow, B.L., and Immordino-Yang, M.H., The brainstem in emotion: a review, Front. Neuroanat., 2017, vol. 11, p. 15.

    Article  Google Scholar 

  36. Gamal-Eltrabily, M., Martínez-Lorenzana, G., González-Hernández, A., and Condés-Lara, M., Cortical modulation of nociception, Neuroscience, 2021, vol. 458, p. 256.

    Article  CAS  Google Scholar 

  37. Palazzo, E., Boccella, S., Marabese, I., et al., Homo-AMPA in the periaqueductal grey modulates pain and rostral ventromedial medulla activity in diabetic neuropathic mice, Neuropharmacology, 2022, vol. 212, p. 109047.

    Article  CAS  Google Scholar 

  38. Subramanian, H.H. and Holstege, G., The midbrain periaqueductal gray changes the eupneic respiratory rhythm into a breathing pattern necessary for survival of the individual and of the species, Prog. Brain Res., 2014, vol. 212, p. 351.

    Article  Google Scholar 

  39. Faull, O.K., Subramanian, H.H., Ezra, M., and Pattinson, K.T.S., The midbrain periaqueductal gray as an integrative and interoceptive neural structure for breathing, Neurosci. Biobehav. Rev., 2019, vol. 98, p. 135.

    Article  Google Scholar 

  40. Green, A.L. and Paterson, D.J., Using deep brain stimulation to unravel the mysteries of cardiorespiratory control, Compr. Physiol., 2020, vol. 10, no. 3, p. 1085.

    Article  Google Scholar 

  41. Dampney, R.A., Central mechanisms regulating coordinated cardiovascular and respiratory function during stress and arousal, Am. J. Physiol.: Regul., Integr. Comp. Physiol., 2015, vol. 309, no. 5, p. R429.

    CAS  Google Scholar 

  42. Zare, A., Jahanshahi, A., Rahnama’i, M.S., et al., The role of the periaqueductal gray matter in lower urinary tract function, Mol. Neurobiol., 2019, vol. 56, no. 2, p. 920.

    Article  CAS  Google Scholar 

  43. Rodriguez, E., Sakurai, K., Xu, J., et al., Craniofacial-specific monosynaptic circuit enables heightened affective pain, Nat. Neurosci., 2017, vol. 20, no. 12, p. 1734.

    Article  CAS  Google Scholar 

  44. Fulwiler, C.E. and Saper, C.B., Subnuclear organization of the efferent connections of the parabrachial nucleus in the rat, Brain Res., 1984, vol. 319, no. 3, p. 229.

    Article  CAS  Google Scholar 

  45. Chiang, M.C., Bowen, A., Schier, L.A., et al., Parabrachial complex: a hub for pain and aversion, J. Neurosci., 2019, vol. 39, no. 42, p. 8225.

    Article  CAS  Google Scholar 

  46. Block, C.H. and Hoffman, G.E., Neuropeptide and monoamine components of the parabrachial pontine complex, Peptides, 1987, vol. 8, no. 2, p. 267.

    Article  CAS  Google Scholar 

  47. Kalia, M. and Mesulam, M.M., Brain stem projections of sensory and motor components of the vagus complex in the cat: II. Laryngeal, tracheobronchial, pulmonary, cardiac, and gastrointestinal branches, J. Comp. Neurol., 1980, vol. 193, no. 2, p. 467.

    Article  CAS  Google Scholar 

  48. Holt, M.K., The ins and outs of the caudal nucleus of the solitary tract: an overview of cellular populations and anatomical connections, J. Neuroendocrinol., 2022, vol. 34, no. 6, p. e13132.

    Article  CAS  Google Scholar 

  49. Bonham, A.C. and McCrimmon, D.R., Neurones in a discrete region of the nucleus tractus solitarius are required for the Breuer—Hering reflex in rat, J. Physiol., 1990, vol. 427, p. 261.

    Article  CAS  Google Scholar 

  50. Chang, R.B., Strochlic, D.E., Williams, E.K., et al., Vagal sensory neuron subtypes that differentially control breathing, Cell, 2015, vol. 161, no. 3, p. 622.

    Article  CAS  Google Scholar 

  51. Chan, R.K., Jarvina, E.V., and Sawchenko, P.E., Effects of selective sinoaortic denervations on phenylephrine-induced activational responses in the nucleus of the solitary tract, Neuroscience, 2000, vol. 101, no. 1, p. 165.

    Article  CAS  Google Scholar 

  52. Williams, E.K., Chang, R.B., Strochlic, D.E., et al., Sensory neurons that detect stretch and nutrients in the digestive system, Cell, 2016, vol. 166, no. 1, p. 209.

    Article  CAS  Google Scholar 

  53. Maniscalco, J.W. and Rinaman, L., Vagal interoceptive modulation of motivated behavior, Physiology (Bethesda). 2018, vol. 33, no. 2, p. 151.

    Article  CAS  Google Scholar 

  54. Forstenpointner, J., Maallo, A.M.S., Elman, I., et al., The solitary nucleus connectivity to key autonomic regions in humans, Eur. J. Neurosci., 2022. https://doi.org/10.1111/ejn.15691

  55. Terenzi, M.G. and Ingram, C.D., A combined immunocytochemical and retrograde tracing study of noradrenergic connections between the caudal medulla and bed nuclei of the stria terminalis, Brain Res., 1995, vol. 672, nos. 1–2, p. 289.

    Article  CAS  Google Scholar 

  56. Geerling, J.C. and Loewy, A.D., Aldosterone-sensitive neurons in the nucleus of the solitary tract: bidirectional connections with the central nucleus of the amygdala, J. Comp. Neurol., 2006, vol. 497, no. 4, p. 646.

    Article  Google Scholar 

  57. Kawai, Y., Differential ascending projections from the male rat caudal nucleus of the tractus solitarius: an interface between local microcircuits and global macrocircuits, Front. Neuroanat., 2018, vol. 12, p. 63.

    Article  Google Scholar 

  58. Geerling, J.C., Shin, J.W., Chimenti, P.C., and Loewy, A.D., Paraventricular hypothalamic nucleus: axonal projections to the brainstem, J. Comp. Neurol., 2010, vol. 518, no. 9, p. 1460.

    Article  Google Scholar 

  59. Hardy, S.G., Hypothalamic projections to cardiovascular centers of the medulla, Brain Res., 2001, vol. 894, no. 2, p. 233.

    Article  CAS  Google Scholar 

  60. Ross, C.A., Ruggiero, D.A., and Reis, D.J., Afferent projections to cardiovascular portions of the nucleus of the tractus solitarius in the rat, Brain Res., 1981, vol. 223, no. 2, p. 402.

    Article  CAS  Google Scholar 

  61. Herbert, H., Moga, M.M., and Saper, C.B., Connections of the parabrachial nucleus with the nucleus of the solitary tract and the medullary reticular formation in the rat, J. Comp. Neurol., 1990, vol. 293, no. 4, p. 540.

    Article  CAS  Google Scholar 

  62. Chen, Z., Lin, M.T., Zhan, C., et al., A descending pathway emanating from the periaqueductal gray mediates the development of cough-like hypersensitivity, iScience, 2021, vol. 25, no. 1, p. 103641.

  63. Lima-Silveira, L., Accorsi-Mendonca, D., Bonagamba, L.G.H., et al., Enhancement of excitatory transmission in NTS neurons projecting to ventral medulla of rats exposed to sustained hypoxia is blunted by minocycline, J. Physiol., 2019, vol. 597, no. 11, p. 2903.

    Article  CAS  Google Scholar 

  64. Saha, S., Role of the central nucleus of the amygdala in the control of blood pressure: descending pathways to medullary cardiovascular nuclei, Clin. Exp. Pharmacol. Physiol., 2005, vol. 32, nos. 5–6, p. 450.

    Article  CAS  Google Scholar 

  65. de La Serre, C.B., Kim, Y.J., Moran, T.H., and Bi, S., Dorsomedial hypothalamic NPY affects cholecystokinin-induced satiety via modulation of brain stem catecholamine neuronal signaling, Am. J. Physiol.: Regul., Integr. Comp. Physiol., 2016, vol. 311, no. 5, p. R930.

    Google Scholar 

  66. Turner, A., Kumar, N., Farnham, M., et al., Rostroventrolateral medulla neurons with commissural projections provide input to sympathetic premotor neurons: anatomical and functional evidence, Eur. J. Neurosci., 2013, vol. 38, no. 4, p. 2504.

    Article  Google Scholar 

  67. Schreihofer, A.M.V. and Sved, A.F., The ventrolateral medulla and sympathetic regulation of arterial pressure, Central Regulation of Autonomic Functions, Llewellyn-Smith, I.J., and Verberne, A.J., Eds., New York: Oxford University Press, 2011, p. 78.

  68. Guyenet, P.G., Stornetta, R.L., Holloway, B.B., et al., Rostral ventrolateral medulla and hypertension, Hypertension, 2018, vol. 72, no. 3, p. 559.

    Article  CAS  Google Scholar 

  69. Souza, G.M.P.R., Stornetta, R.L., Stornetta, D.S., et al., Adrenergic C1 neurons monitor arterial blood pressure and determine the sympathetic response to hemorrhage, Cell Rep., 2022, vol. 38, no. 10, p. 110480.

    Article  CAS  Google Scholar 

  70. Guyenet, P.G. and Stornetta, R.L., Rostral ventrolateral medulla, retropontine region and autonomic regulations, Auton. Neurosci., 2022, vol. 237, p. 102922.

    Article  CAS  Google Scholar 

  71. Reis, D.J., Granata, A.R., Perrone, M.H., and Talman, W.T., Evidence that glutamic acid is the neurotransmitter of baroreceptor afferent terminating in the nucleus tractus solitarius, J. Auton. Nerv. Syst., 1981, vol. 3, nos. 2–4, p. 321.

    Article  CAS  Google Scholar 

  72. Morrison, S.F., Ernsberger, P., Milner, T.A., et al., A glutamate mechanism in the intermediolateral nucleus mediates sympathoexcitatory responses to stimulation of the rostral ventrolateral medulla, Prog. Brain Res., 1989, vol. 81, p. 159.

    Article  CAS  Google Scholar 

  73. Hou, X., Rong, C., Wang, F., et al., GABAergic system in stress: implications of GABAergic neuron subpopulations and the gut−vagus−brain pathway, Neural Plast., 2020, vol. 2020, p. 8858415.

    Article  Google Scholar 

  74. Day, T.A., Control of neurosecretory vasopressin cells by noradrenergic projections of the caudal ventrolateral medulla, Prog. Brain Res., 1989, vol. 81, p. 303.

    Article  CAS  Google Scholar 

  75. Gardiner, S.M. and Bennett, T., Brain neuropeptides: actions on central cardiovascular control mechanisms, Brain Res. Rev., 1989, vol. 14, no. 1, p. 79.

    Article  CAS  Google Scholar 

  76. Allen, A.M., O’Callaghan, E.L., Chen, D., and Bassi, J.K., Central neural regulation of cardiovascular function by angiotensin: a focus on the rostral ventrolateral medulla, Neuroendocrinology, 2009, vol. 89, no. 4, p. 361.

    Article  CAS  Google Scholar 

  77. Zhang, L., Padilla-Flores, T., Hernández, V.S., et al., Vasopressin acts as a synapse organizer in limbic regions by boosting PSD95 and GluA1 expression, J. Neuroendocrinol., 2022. https://doi.org/10.1111/jne.13164

  78. Battaglia, S. and Thayer, J.F., Functional interplay between central and autonomic nervous systems in human fear conditioning, Trends Neurosci., 2022, vol. 45, no. 7, p. 504.

    Article  CAS  Google Scholar 

  79. Soni, R. and Muniyandi, M., Breath rate variability: a novel measure to study the meditation effects, Int. J. Yoga, 2019, vol. 12, no. 1, p. 45.

    Article  Google Scholar 

  80. Pal, A., Martinez, F., Akey, M.A., et al., Breathing rate variability in obstructive sleep apnea during wakefulness, J. Clin. Sleep Med., 2022, vol. 18, no. 3, p. 825.

    Article  Google Scholar 

  81. Zanetti, M., Faes, L., Nollo, G., et al., Information dynamics of the brain, cardiovascular and respiratory network during different levels of mental stress, Entropy (Basel), 2019, vol. 21, no. 3, p. 275.

    Article  Google Scholar 

  82. de Zambotti, M., Trinder, J., Silvani, A., et al., Dynamic coupling between the central and autonomic nervous systems during sleep: a review, Neurosci. Biobehav. Rev., 2018, vol. 90, p. 84.

    Article  Google Scholar 

  83. Liu, D. and Dan, Y., A motor theory of sleep−wake control: arousal-action circuit, Annu. Rev. Neurosci., 2019, vol. 42, p. 27.

    Article  CAS  Google Scholar 

  84. Whitehurst, L.N., Subramoniam, A., Krystal, A., and Prather, A.A., Links between the brain and body during sleep: implications for memory processing, Trends Neurosci., 2022, vol. 45, no. 3, p. 212.

    Article  CAS  Google Scholar 

  85. Sherin, J.E., Shiromani, P.J., McCarley, R.W., and Saper, C.B., Activation of ventrolateral preoptic neurons during sleep, Science, 1996, vol. 271, no. 5246, p. 216.

    Article  CAS  Google Scholar 

  86. Silvani, A., Calandra-Buonaura, G., Benarroch, E.E., et al., Bidirectional interactions between the baroreceptor reflex and arousal: an update, Sleep Med., 2015, vol. 16, no. 2, p. 210.

    Article  Google Scholar 

  87. Norcliffe-Kaufmann, L., Stress and the baroreflex, Auton. Neurosci., 2022, vol. 238, p. 102946.

    Article  CAS  Google Scholar 

  88. Browning, K.N. and Carson, K.E., Central neurocircuits regulating food intake in response to gut inputs—preclinical evidence, Nutrients, 2021, vol. 13, no. 3, p. 908.

    Article  CAS  Google Scholar 

  89. Carmichael, S.T. and Price, J.L., Sensory and premotor connections of the orbital and medial prefrontal cortex of macaque monkeys, J. Comp. Neurol., 1995, vol. 363, no. 4, p. 642.

    Article  CAS  Google Scholar 

  90. Bedwell, S.A. and Tinsley, C.J., Mapping of fine-scale rat prefrontal cortex connections: evidence for detailed ordering of inputs and outputs connecting the temporal cortex and sensory—motor regions, Eur. J. Neurosci., 2018, vol. 48, no. 3, p. 1944.

    Article  Google Scholar 

Download references

Funding

The study was carried out as part of the research work under the Program “Fundamental Scientific Research for Long-Term Development and Ensuring the Competitiveness of Society and the State.” Topic 64.1 (0134-2019-0001) “Uncovering the mechanisms of interaction between molecular-cellular and systemic regulation of internal organs.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Aleksandrov.

Ethics declarations

Conflict of interest. The authors declare no obvious or potential conflict of interest related to the publication of this article.

Additional information

Translated by A. Deryabina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleksandrov, V.G., Gubarevich, E.A., Kokurina, T.N. et al. Central Autonomic Network. Hum Physiol 48, 759–765 (2022). https://doi.org/10.1134/S0362119722600412

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119722600412

Keywords:

Navigation