Skip to main content
Log in

Morphometric and Functional Changes of the Brain in Mental Disorders and Their Dynamics during Drug Treatment

  • REVIEWS
  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

This review examines the results of morphometric studies of the brain in recent years, devoted to the influence of neurodegenerative changes (negative neuroplasticity) on the pathogenesis of major mental diseases: major depressive disorder and schizophrenia. Modern ideas about functional changes in the brain in these diseases are also considered. The relationship between the main groups of psychotropic drugs were analyzed: antidepressants, neuroleptics, and neuroprotectors with the detected morphometric changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Mazo, G.E., Kibitov, A.O., Rukavishnikov, G.V., et al., Therapeutic resistance in depression as an object of interdisciplinary biomedical study, Sots. Klin. Psikhiatr., 2017, vol. 27, no. 4, p. 70.

    Google Scholar 

  2. Fried, E.I. and Nesse, R.M., Depression is not a consistent syndrome: an investigation of unique symptom patterns in the STAR*D study, J. Affective Disord., 2015, vol. 172, p. 96.

    Article  Google Scholar 

  3. Shal’nova, S.A., Evstaf’eva, S.E., Deev, A.D., et al., The prevalence of anxiety and depression in different regions of the Russian Federation and its association with sociodemographic factors (according to the data of the ESSE-RF study), Ter. Arkh., 2014, vol. 86, no. 12, p. 53.

    Article  PubMed  Google Scholar 

  4. van Agtmaal, M.J.M., Houben, A.J.H.M., Pouwer, F., et al., Association of microvascular dysfunction with late-life depression: a systematic review and meta-analysis, J.A.M.A. Psychiatry, 2017, vol. 74, no. 7, p. 729.

    Google Scholar 

  5. Aftanas, L.I., Depression and neurodegeneration: new diagnostic and therapeutic strategies, Nauka Iz Pervykh Ruk, 2017, no. 1 (73), p. 40.

  6. Naryshkin, A.G., Galanin, I.V., Gorelik, A.L., et al., Chastnye voprosy neiroplastichnosti. Vestibulyarnaya deretseptsiya (Particular Problems of Neuroplasticity. Chemical Destruction of Vestibular Receptors), St. Petersburg: Foliant, 2017.

  7. Boldrini, M., Fulmore, C.A., Tartt, A.N., et al., Human hippocampal neurogenesis persists throughout aging, Cell Stem Cell, 2018, vol. 22, no. 4, p. 589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Naryshkin, A.G., Galanin, I.V., and Egorov, A.Yu., Controlled neuroplasticity, Hum. Physiol., 2020, vol. 46, no. 2, p. 216.

    Article  Google Scholar 

  9. Levchuk, L.A., Vyalova, N.M., Mikhalitskaya, E.V., et al., The role of BDNF in the pathogenesis of neurological and mental disorders, Sovrem. Probl. Nauki Obraz., 2018, no. 6, p. 58.

  10. Damulin, I.V., Cortical connections, “disconnection” syndrome, and higher brain functions, Zh. Nevrol. Psikhiatr. im. S.S. Korsakova, 2015, vol. 115, no. 11, p. 107.

    Article  CAS  PubMed  Google Scholar 

  11. Levy, M.J.F., Boulle, F., Steinbush, H.W., et al., Neurotrophic factors and neuroplasticity pathway sin the pathophysiology and treatment of depression, Psychopharmacology, 2018, vol. 235, no. 8, p. 2195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bludau, S., Bzdok, D., Gruber, O., et al., Medial prefrontal aberration sin major depressive disorder revealed by cytoarchitectonically in formed voxel-based morphometry, Am. J. Psychiatry, 2016, vol. 173, no. 3, p. 291.

    Article  PubMed  Google Scholar 

  13. Dai, L., Zhou, H., Xu, X., et al., These findings provide an opportunity tore-underst and the biological mechanisms of depression, Peer J., 2019, vol. 7, p. e8170.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Manelis, A., Huppert, T., Rogers, E., et al., The role of the right prefrontal cortex in recognition of facial emotional expressions in depressed individuals: fNIRS study, J. Affective Disord., 2019, vol. 258, p. 151.

    Article  Google Scholar 

  15. Lu, Y., Liang, H., Han, D., et al., The volumetric and shape changes of the putamen and thalamus in first episode, untreated major depressive disorder, NeuroImage: Clin., 2016, vol. 11, p. 658.

    Article  Google Scholar 

  16. Fonseka, T.M., MacQueen, G.M., and Kennedy, S.H., Neuroimaging biomarkers as predictors of treatment outcome in Major Depressive Disorder, J. Affective Disord., 2018, vol. 233, p. 21.

    Article  Google Scholar 

  17. Zhang, H., Li, L., Wu, M., et al., Brain gray matter alterations in first episodes of depression: a meta-analysis of whole-brain studies, Neurosci. Biobehav. Rev., 2016, vol. 60, p. 43.

    Article  PubMed  Google Scholar 

  18. Roddy, D.W., Farrell, C., Doolin, K., et al., The hippocampus in depression: more than the sumo fits parts. Advanced hippocampal substructure segmentation in depression, Biol. Psychiatry, 2019, vol. 85, no. 6, p. 487.

    Article  PubMed  Google Scholar 

  19. Wise, T., Radua, J., Via, E., et al., Common and distinctpatternsofgrey-mattervolumealterationinmajordepressionandbipolardisorder: evidence from voxel-based meta-analysis, Mol. Psychiatry, 2017, vol. 22, no. 10, p. 1455.

    Article  CAS  PubMed  Google Scholar 

  20. Schmaal, L., Veltman, D.J., van Erp, T.G., et al., Subcortical brain alterations in major depressive disorder: findings from the EVIAMA major depressive working group, Mol. Psychiatry, 2016, vol. 21, no. 6, p. 806.

    Article  CAS  PubMed  Google Scholar 

  21. Zel’man, V.L., “Wikipedia of the brain” against dementia, mental deseases, and brain “catastrophes,” Nauka Iz Pervykh Ruk, 2016, no. 1 (67), p. 18.

  22. Schmaal, L., Hibar, D.P., Sämann, P.G., et al., Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA major depressive disorder working group, Mol. Psychiatry, 2017, vol. 22, no. 6, p. 900.

    Article  CAS  PubMed  Google Scholar 

  23. Espinoza Oyarce, D.A., Shaw, M.E., Alateeq, K., and Cherbuin, N., Volumetric brain differences in clinical depression in association with anxiety: a systematic review with meta-analysis, J. Psychiatry Neurosci., 2020, vol. 45, no. 6, p. 406.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ho, T.G., Gutman, B., Pozzi, E., et al., Subcortical shape alterations in major depressive disorder: findings from the major depressive disorder working group, Hum. Brain Mapp., 2022, vol. 43, no. 1, p. 341. https://doi.org/10.1002/hbm.24988

    Article  PubMed  Google Scholar 

  25. Young, K.D., Sigle, G.J., Zotev, V., et al., Randomized clinical trial of real-time fMRI amygdala neurofeedback for major depressive disorder: effects on symptoms and autobiographical memory recall, Am. J. Psychiatry, 2017, vol. 174, no. 8, p. 748.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kirenskaya, A.V., Storozheva, Z.I., and Tkachenko, A.A., Neirofiziologicheskie endofenotipy shizofrenii kak instrument dlya izucheniya vnimaniya i kontrolya povedeniya: perspektivy issledovanii i diagnostiki (Neurophysiological Endophenotypes of Schizophrenia as a Tool for Study of Attention and Behavior Control: Prospective Studies and Diagnostics), St. Petersburg: Nestor-Istoriya, 2015, p. 336.

  27. Drysdale, A.T., Grosenick, L., Downar, J., et al., Resting-state connectivity biomarkers define neurophysiological subtypes of depression, Nat. Med., 2017, vol. 23, no. 1, p. 28.

    Article  CAS  PubMed  Google Scholar 

  28. Dinga, R., Schmaal, L., Penninx, B., et al., Evaluating the evidence for bio types of depression: Methodological replication and extension of depression, NeuroImage: Clin., 2019, vol. 22, art. ID 101796.

    Article  Google Scholar 

  29. Klyushnikov, A.S., Vereyutina, I.A., and Illarioshkin, S.N., Neurodegenerative diseases and regulatory peptides, Nervnye Bolezni, 2017, no. 1, p. 41.

  30. Guseva, E.I. and Bogolepova, A.N., The role of neuroplasticity processes in the development of depressive disorders, Trudnyi Patsient, 2010, vol. 8, no. 10, p. 11.

    Google Scholar 

  31. Bogolepova, A.N., The role of neurotrophic factors in the development of post-stroke depression, Consilium Med., 2019, vol. 21, no. 2, p. 18.

    Article  Google Scholar 

  32. Polyakova, M., Stuke, K., Schuemberg, K., et al., BDNF as a biomarker for successful treatment of mood disorders: a systematic quantitative meta-analysis, J. Affective Disord., 2015, vol. 174, p. 432.

    Article  CAS  Google Scholar 

  33. Deyama, S., Bang, E., Kato, T., et al., Neurotrophic and antidepressant action of brain-derived neurotrophic factor require vascular endothelial growth factor, J. Biol. Psychiatry, 2019, vol. 86, no. 2, p. 143.

    Article  CAS  Google Scholar 

  34. Krasnov, V.N., Diseases of the schizophrenic spectrum, in Psikhiatriya. Natsional’noe rukovodstvo (Psychiatry. National Guidance), Aleksandrovskii, Yu.A. and Neznanov, N.G., Eds., Moscow: Geotar-Media, 2018, p. 252.

  35. Orlova, V.A., Serikova, T.M., Chernishchuk, S.N., et al., Neurodegeneration in schizophrenia: data of spectral-dynamic analysis, Sots. Klin. Psikhiatr., 2010, vol. 20, no. 2, p. 67.

    Google Scholar 

  36. Kuo, S.S. and Pogue-Geile, M.F., Variation in fourteen brain structure volumesin schizophrenia: a comprehensive meta-analysis of 246 studies, Neurosci. Biobehav. Rev., 2019, vol. 98, p. 85.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Torres, U.S., Duran, F.L.S., Schaufelberger, M.S., et al., Patterns of regional gray matter loss at different tages of schizophrenia: amultisite, cross-sectional VBM study in first-episode and chronic illness, Neuroimage Clin., 2016, vol. 12, p. 1.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Corson, P.W., Nopoulos, P., and Miller, D.D., Change in basal ganglia volume over 2 years in patients with schizophrenia: typical versus atypical neuroleptics, Am. J. Psychiatry, 1999, vol. 156, no. 8, p. 1200.

    Article  CAS  PubMed  Google Scholar 

  39. Scheepers, F.E., Gispen, C.C., and Wied, C.C., The effect of clozapine on caudate nucleus volumee in relation to symptoms of schizophrenia, Am. J. Psychiatry, 2001, vol. 158, no. 4, p. 644.

    Article  CAS  PubMed  Google Scholar 

  40. Vanes, L.D., Mouchlianitis, E., Collier, T., et al., Differential neural reward mechanisms in treatment-responsive and treatment-resistant schizophrenia, Psychol. Med., 2018, vol. 48, no. 14, p. 2418.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Tronchin, G., Akujedu, T.N., Ahmed, M., et al., Progressive subcortical volume loss in treatment-resistant schizophrenia patients after commencing clozapine treatment, Neuropsychopharmacology, 2020, vol. 45, no. 8, p. 1353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li, S., Hu, N., Zhang, W., et al., Dysconnectivity of multiple brain networks in schizophrenia: a meta-analysis of resting-state functional connectivity, Front. Psychiatry, 2019, vol. 10, p. 482.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Schweiger, J., Bilek, E., Schafer, A., et al., Effects of BDNF Val66 Met genotype and schizophrenia familial risk on a neural functional network for cognitive control in humans, Neuropsychopharmacology, 2019, vol. 44, no. 3, p. 509.

    Article  CAS  Google Scholar 

  44. Kolesnichenko, E.V., Baryl’nik, Yu.B., and Golimbet, V.E., Influence of BDNF gene on the phenotypic expression of paranoid schizophrenia, Sots. Klin. Psikhiatr., 2015, vol. 25, no. 2, p. 45.

    Google Scholar 

  45. Di Carlo, P., Punzi, G., and Ursini, G., Brain-derived neurotrophic factor and schizophrenia, Psychiatr. Genet., 2019, vol. 29, no. 5, p. 200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tanashyan, M.M., Konovalov, R.N., and Lagoda, O.V., New approaches to the correction of cognitive impairment in cerebrovascular diseases, Ann. Klin. Eksp. Nevrol., 2018, vol. 12, no. 3, p. 36.

    Google Scholar 

  47. Safonova, M.N., Kovalenko, A.V., and Mizyurkina, O.A., Combined neuroprotection in the treatment of post-stroke aphasias, Zh. Nevrol. Psikhiatr. im. S.S. Korsakova, 2019, vol. 119, no. 7, p. 20.

    Article  Google Scholar 

  48. Mamchur, V.I., Dronov, S.I., and Zhilyuk, V.I., Pharmacotherapeutic aspects of Olatropil, Mezhdunar. Nevrol. Zh., 2018, vol. 101, no. 7, p. 49.

    Google Scholar 

  49. Fekete, R. and Jankovic, J., Revisiting the relationship between essential tremor and Parkinson’s disease, Mov. Disord., 2011, vol. 26, no. 3, p. 391.

    Article  CAS  PubMed  Google Scholar 

  50. Dorovskikh, I.V., A new insight on the therapeutic use of a well-known neuroprotector in psychiatry, Nevrologiya, 2015, no. 5, p. 66.

  51. Medvedev, V.E., Nootropnye preparaty i neiroprotektory v lechenii psikhicheskikh rasstroistv: Uchebno-metodicheskoe posobie (Nootropics and Neuroprotectors in the Treatment of Psychiatric Disorders: Manual), Moscow: Ross. Univ. Druzhby Nar., 2015.

  52. Medvedev, V.E., Frolova, V.I., and Epifanov, A.V., New pharmacotherapy of mental disorders of patients with cardiovascular diseases, Zh. Nevrol. Psikhiatr. im. S.S. Korsakova, 2014, vol. 114, no. 9, p. 30.

    CAS  PubMed  Google Scholar 

  53. Maletic, V., Robinson, M., and Oakes, T., Neurobiology of depression: an integrated view of key findings, Int. J. Clin. Pract., 2007, vol. 61, no. 12, p. 2030.

    Article  CAS  PubMed  Google Scholar 

  54. Autry, A.E., Adachi, M., Noyreva, E., et al., NMDA receptor blockade at rest triggers rapid behavioral antidepressant responses, Nature, 2011, vol. 475, no. 7354, p. 91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Neznanov, N.G., Rukovishnikov, G.V., Kas’yanov, V.D., et al., A new approach to the systematics of mental deseases: a point of support or a point of view? Obozr. Psikhiatr. Med. Psikhol., 2020, no. 3, p. 3.

Download references

Funding

The study was carried out in accordance with the topic “Mechanisms of the Formation of Physiological Functions in Phylo- and Ontogenesis and the Influence of Endogenous and Exogenous Factors on Them.” State order no. АААА-А18-118012290373-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Naryshkin.

Ethics declarations

CONFLICT OF INTERESTS

The authors declare no conflicts of interests.

COMPLIANCE WITH ETHICAL STANDARDS

This work does not contain any studies involving animals or human subjects performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galanin, I.V., Naryshkin, A.G., Liaskina, I.Y. et al. Morphometric and Functional Changes of the Brain in Mental Disorders and Their Dynamics during Drug Treatment. Hum Physiol 48, 306–312 (2022). https://doi.org/10.1134/S0362119722020062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119722020062

Keywords:

Navigation