Skip to main content
Log in

Functional Ensembles in the Brains of Humans and Animals

  • REVIEWS
  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

This paper discusses the formation of functional ensembles in the brain. On the basis of recent data, it is concluded that neuronal ensembles are important as functional units in the brain and that ensemble coding is highly prevalent in the brain. The specifics of studying neuronal ensembles in humans are specially discussed. The importance of the formation, development, interaction, and degradation of ensembles is emphasized. Some theoretical aspects of the problem are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Savvateeva-Popova, E.V., Nikitina, E.A., and Medvedeva, A.V., Neurogenetics and neuroepigenetics, Russ. J. Genet., 2015, vol. 51, no. 5, p. 518.

    Article  CAS  Google Scholar 

  2. Ukhtomskii, A.A., Dominanta (A Dominant), St. Petersburg: Piter, 2002.

    Google Scholar 

  3. Hebb, D.O., The Organization of Behavior: A Neuropsychological Theory, New York: Wiley, 1949.

    Google Scholar 

  4. Ocker, G.K. and Doiron, B., Training and spontaneous reinforcement of neuronal assemblies by spike timing plasticity, Cereb. Cortex, 2019, vol. 29, no. 3, p. 937.

    Article  PubMed  Google Scholar 

  5. Greenfield, S., A Day in the Life of the Brain: The Neuroscience of Consciousness from Dawn Till Dusk, London: Allen Lane, 2018.

  6. Pavlova, L.P., Dominanty deyatel’nosti mozga cheloveka: sistemnyi psikhofiziologicheskii podkhod k analizu EEG (Dominants of the Active Human Brain: A Systemic Psychophysiological Approach to EEG Analysis), St. Petersburg: Inform-Navigator, 2017.

  7. Nicolelis, M.A.L., Fanselow, E.E., and Ghazanfar, A.A., Hebb’s dream: the resurgence of cell assemblies, Neuron, 1997, vol. 19, no. 2, p. 219.

    Article  CAS  PubMed  Google Scholar 

  8. Yuste, R., From the neuron doctrine to neural networks, Nat. Rev. Neurosci., 2015, vol. 16, no. 8, p. 487.

    Article  CAS  PubMed  Google Scholar 

  9. Pastore, V.P., Massobrio, P., Godjoski, A., and Martinoia, S., Identification of excitatory-inhibitory links and network topology in large-scale neuronal assemblies from multi-electrode recordings, PLoS Comput. Biol., 2018, vol. 14, no. 8, p. e1006381.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Carrillo-Reid, L., Yang, W., Kang Miller, J.E., et al., Imaging and optically manipulating neuronal ensembles, Annu. Rev. Biophys., 2017, vol. 46, p. 271.

    Article  CAS  PubMed  Google Scholar 

  11. Awal, M.R., Wirak, G.S., Gabel, C.V., and Connor, C.W., Collapse of global neuronal states in Caenorhabditis elegans under isoflurane anesthesia, Anesthesiology, 2020, vol. 133, no. 1, p. 133.

    Article  CAS  PubMed  Google Scholar 

  12. Palm, G., Knoblauch, A., Hauser, F., and Schüz, A., Cell assemblies in the cerebral cortex, Biol. Cybern., 2014, vol. 108, no. 5, p. 559.

    Article  PubMed  Google Scholar 

  13. Nadel, L. and Maurer, A.P., Recalling Lashley and reconsolidating Hebb, Hippocampus, 2020, vol. 30, no. 8, p. 776.

    Article  CAS  PubMed  Google Scholar 

  14. Kropotov, J.D., Quantitative EEG, Event-Related Potentials and Neurotherapy, Amsterdam: Elsevier, 2009.

    Google Scholar 

  15. Li, M., Liu, J., and Tsien, J.Z., Theory of connectivity: nature and nurture of cell assemblies and cognitive computation, Front. Neural Circ., 2016, vol. 10, p. 34.

    Google Scholar 

  16. Poli, D., Pastore, V.P., Martinoia, S., and Massobrio, P., From functional to structural connectivity using partial correlation in neuronal assemblies, J. Neural Eng., 2016, vol. 13, no. 2, p. 026023.

    Article  PubMed  Google Scholar 

  17. Perin, R., Berger, T.K., and Markram, H., A synaptic organizing principle for cortical neuronal groups, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, no. 13, p. 5419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Diana, G., Sainsbury, T.T.J., and Meyer, M.P., Bayesian inference of neuronal assemblies, PLoS Comput. B-iol., 2019, vol. 15, no. 10, p. 1.

    Google Scholar 

  19. Buzsáki, G., Neural syntax: cell assemblies, synapsembles, and readers, Neuron, 2010, vol. 68, no. 3, p. 362.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Aur, D., A comparative analysis of integrating visual information in local neuronal ensembles, J. Neurosci. Methods, 2012, vol. 207, no. 1, p. 23.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Leavitt, M.L., Pieper, F., Sachs, A.J., and Martinez-Trujillo, J.C., Correlated variability modifies working memory fidelity in primate prefrontal neuronal ensembles, Proc. Natl. Acad. Sci. U.S.A., 2017, vol. 114, no. 12, p. E2494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Christensen, T.A., Pawlowski, V.M., Lei, H., and Hildebrand, J.G., Multi-unit recordings reveal context-dependent modulation of synchrony in odor-specific neural ensembles, Nat. Neurosci., 2000, vol. 3, no. 9, p. 927.

    Article  CAS  PubMed  Google Scholar 

  23. Stettler, D.D. and Axel, R., Representations of odor in the piriform cortex, Neuron, 2009, vol. 63, no. 6, p. 854.

    Article  CAS  PubMed  Google Scholar 

  24. Choi, G.B., Stettler, D.D., Kallman, B.R., et al., Driving opposing behaviors with ensembles of piriform neurons, Cell, 2011, vol. 146, no. 6, p. 1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Backen, T., Treue, S., and Martinez-Trujillo, J.C., Encoding of spatial attention by primate prefrontal cortex neuronal ensembles, eNeuro, 2018, vol. 5, no. 1.

  26. Tremblay, S., Pieper, F., Sachs, A., and Martinez-Trujillo, J., Attentional filtering of visual information by neuronal ensembles in the primate lateral prefrontal cortex, Neuron, 2015, vol. 85, no. 1, p. 202.

    Article  CAS  PubMed  Google Scholar 

  27. Baranov-Krylov, I.N., Shuvaev, V.T., and Berlov, D.N., Changes in evoked potentials depending on attention level in performance of visual tasks, Hum. Physiol., 2003, vol. 29, no. 2, p. 136.

    Article  Google Scholar 

  28. Durstewitz, D., Vittoz, N.M., Floresco, S.B., and Seamans, J.K., Abrupt transitions between prefrontal neural ensemble states accompany behavioral transitions during rule learning, Neuron, 2010, vol. 66, no. 3, p. 438.

    Article  CAS  PubMed  Google Scholar 

  29. Karlsson, M.P., Tervo, D.G.R., and Karpova, A.Y., Network resets in medial prefrontal cortex mark the onset of behavioral uncertainty, Science, 2012, vol. 338, no. 6103, p. 135.

    Article  CAS  PubMed  Google Scholar 

  30. Jog, M.S., Aur, D., and Connolly, C.I., Is there a tipping point in neuronal ensembles during learning? Neurosci. Lett., 2007, vol. 412, no. 1, p. 39.

    Article  CAS  PubMed  Google Scholar 

  31. Stefanini, F., Kheirbek, M.A., Kushnir, L., et al., A distributed neural code in the dentate gyrus and in CA1, Neuron, 2020, vol. 107, no. 4, p. 703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sasaki T., Non-structured spike sequences of hippocampal neuronal ensembles in awake animals, Neurosci. Res., 2019, vol. 142, p. 1.

    Article  PubMed  Google Scholar 

  33. Whitlock, J.R., Movement coding at the mesoscale in posterior parietal cortex, Neuron, 2017, vol. 95, no. 6, p. 1234.

    Article  CAS  PubMed  Google Scholar 

  34. Wilber, A.A., Skelin, I., Wu, W., and McNaugh-ton, B.L., Laminar organization of encoding and memory reactivation in the parietal cortex, Neuron, 2017, vol. 95, no. 6, p. 1406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Carmena, J.M., Lebedev, M.A., Henriquez, C.S., and Nicolelis, M.A., Stable ensemble performance with single-neuron variability during reaching movements in primates, J. Neurosci., 2005, vol. 25, no. 46, p. 10712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Driscoll, L.N., Pettit, N.L., Minderer, M., et al., Dynamic reorganization of neuronal activity patterns in parietal cortex, Cell, 2017, vol. 170, no. 5, p. 986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Matsuo, N., Irreplaceability of neuronal ensembles after memory allocation, Cell Rep., 2015, vol. 11, no. 3, p. 351.

    Article  CAS  PubMed  Google Scholar 

  38. Coltheart, M., Grandmother cells and the distinction between local and distributed representation, Lang. Cognit. Neurosci., 2017, vol. 32, no. 3, p. 350.

    Article  Google Scholar 

  39. Aur, D., A comparative analysis of integrating visual information in local neuronal ensembles, J. Neurosci. Methods, 2012, vol. 207, no. 1, p. 23.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wenzel, M., Han, S., Smith, E.H., et al., Reduced repertoire of cortical microstates and neuronal ensembles in medically induced loss of consciousness, Cell Syst., 2019, vol. 8, no. 5, p. 467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Szegedi, V., Paizs, M., Csakvari, E., et al., Plasticity in single axon glutamatergic connection to GABAergic interneurons regulates complex events in the human neocortex, PLoS Biol., 2016, vol. 14, no. 11, p. e2000237.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hochberg, L.R., Serruya, M.D., Friehs, G.M., et al., Neuronal ensemble control of prosthetic devices by a human with tetraplegia, Nature, 2006, vol. 442, no. 7099, p. 164.

    Article  CAS  PubMed  Google Scholar 

  43. Ramakrishnan, A., Ifft, P.J., Pais-Vieira, M., et al., Computing arm movements with a monkey brainet, Sci. Rep., 2015, vol. 5, p. 10767.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Leinders, S., Vansteensel, M.J., Branco, M.P., et al., Dorsolateral prefrontal cortex-based control with an implanted brain–computer interface, Sci. Rep., 2020, vol. 10, no. 1, p. 15448.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ponomarev, V.A., Pronina, M.V., and Kropotov, Yu.D., Parallel factor analysis in the study of event-related potentials, Hum. Physiol., 2019, vol. 45, no. 3, p. 233.

    Article  Google Scholar 

  46. Karakaş, S., Erzengin, O.U., and Başar, E., The genesis of human event-related responses explained through the theory of oscillatory neural assemblies, Neurosci. Lett., 2000, vol. 285, no. 1, p. 45.

    Article  PubMed  Google Scholar 

  47. Pulvermüller, F., Lutzenberger, W., and Preissl, H., Nouns and verbs in the intact brain: Evidence from event-related potentials and high-frequency cortical responses, Cereb. Cortex, 1999, vol. 9, no. 5, p. 497.

    Article  PubMed  Google Scholar 

  48. Kronberg, G., Rahman, A., Sharma, M., et al., Direct current stimulation boosts Hebbian plasticity in vitro, Brain Stimul., 2020, vol. 13, no. 2, p. 287.

    Article  PubMed  Google Scholar 

  49. Jahshan, C., Wynn, J.K., Roach, B.J., et al., Effects of transcranial direct current stimulation on visual neuroplasticity in schizophrenia, Clin. EEG Neurosci., 2020, vol. 51, no. 6, p. 382.

    Article  PubMed  Google Scholar 

  50. Sumner, R.L., Spriggs, M.J., Muthukumaraswa-my, S.D., and Kirk, I.J., The role of Hebbian learning in human perception: a methodological and theoretical review of the human Visual Long-Term Potentiation paradigm, Neurosci. Biobehav. Rev., 2020, vol. 115, p. 220.

    Article  PubMed  Google Scholar 

  51. Bliss, T.V.P. and Lomo, T., Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path, J. Physiol., 1973, vol. 232, no. 2, p. 331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nicoll, R.A., A brief history of long-term potentiation, Neuron, 2017, vol. 93, no. 2, p. 281.

    Article  CAS  PubMed  Google Scholar 

  53. Teyler, T.J., Hamm, J.P., Clapp, W.C., et al., Long-term potentiation of human visual evoked responses, Eur. J. Neurosci., 2005, vol. 21, no. 7, p. 2045.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Cavuş, I., Reinhart, R.M., Roach, B.J., et al., Impaired visual cortical plasticity in schizophrenia, Biol. Psychiatry, 2012, vol. 71, no. 6, p. 512.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Normann, C., Schmitz, D., Fürmaier, A., et al., Long-term plasticity of visually evoked potentials in humans is altered in major depression, Biol. Psychiatry, 2007, vol. 62, no. 5, p. 373.

    Article  PubMed  Google Scholar 

  56. Sanders, P.J., Thompson, B., Corballis, P.M., et al., A review of plasticity induced by auditory and visual tetanic stimulation in humans, Eur. J. Neurosci., 2018, vol. 48, no. 4, p. 2084.

    Article  PubMed  Google Scholar 

  57. Wynn, J.K., Roach, B.J., McCleery, A., et al., Evaluating visual neuroplasticity with EEG in schizophrenia outpatients, Schizophr. Res., 2019, vol. 212, p. 40.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zak, N., Moberget, T., Bшen, E., et al., Longitudinal and cross-sectional investigations of long-term potentiation-like cortical plasticity in bipolar disorder type II and healthy individuals, Transl. Psychiatry, 2018, vol. 8, no. 1, p. 1.

    Article  CAS  Google Scholar 

  59. Wilson, J.F., Lodhia, V., Courtney, D.P., et al., Evidence of hyper-plasticity in adults with autism spectrum disorder, Res. Autism Spectrum Disord., 2017, vol. 43, p. 40.

    Article  Google Scholar 

  60. Spriggs, M.J., Thompson, C.S., Moreau, D., et al., Human sensory LTP predicts memory performance and is modulated by the BDNF Val66Met polymorphism, Front. Hum. Neurosci., 2019, vol. 13, p. 22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Stefanelli, T., Bertollini, C., Lüscher, C., et al., Hippocampal somatostatin interneurons control the size of neuronal memory ensembles, Neuron, 2016, vol. 89, no. 5, p. 1074.

    Article  CAS  PubMed  Google Scholar 

  62. Agetsuma, M., Hamm, J.P., Tao, K., et al., Parvalbumin-positive interneurons regulate neuronal ensembles in visual cortex, Cereb. Cortex, 2018, vol. 28, no. 5, p. 1831.

    Article  PubMed  Google Scholar 

  63. Devonshire, I.M., Grandy, T.H., Dommett, E.J., and Greenfield, S.A., Effects of urethane anaesthesia on sensory processing in the rat barrel cortex revealed by combined optical imaging and electrophysiology, Eur. J. Neurosci., 2010, vol. 32, no. 5, p. 786.

    Article  PubMed  Google Scholar 

  64. Fang, W.Q. and Yuste, R., Overproduction of neurons is correlated with enhanced cortical ensembles and increased perceptual discrimination, Cell Rep., 2017, vol. 21, no. 2, p. 381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Badin, A.S., Fermani, F., and Greenfield, S.A., The features and functions of neuronal assemblies: possible dependency on mechanisms beyond synaptic transmission, Front. Neural Circ., 2017, vol. 10, p. 114.

    Google Scholar 

  66. Traub, R.D., Whittington, M.A., Maier, N., et al., Could electrical coupling contribute to the formation of cell assemblies? Rev. Neurosci., 2020, vol. 31, no. 2, p. 121.

    Article  PubMed  Google Scholar 

  67. Wang, W., Kim, C.K., and Ting, A.Y., Molecular tools for imaging and recording neuronal activity, Nat. Chem. Biol., 2019, vol. 15, no. 2, p. 101.

    Article  CAS  PubMed  Google Scholar 

  68. Sergent, C. and Dehaene, S., Neural processes underlying conscious perception: experimental findings and a global neuronal workspace framework, J. Physiol (Paris), 2004, vol. 98, nos. 4–6, p. 374.

    Google Scholar 

  69. Baars, B.J., Franklin, S., and Ramsøy, T.Z., Global workspace dynamics: cortical “binding and propagation” enables conscious contents, Front. Psychol., 2013, vol. 4, p. 200.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Bekhtereva, N.P., Zdorovyi i bol’noi mozg cheloveka (Human Brain in Normal and Pathological States), Leningrad: Nauka, 1988.

  71. Eckhorn, R., Bauer, R., Jordan, W., et al., Coherent oscillations: a mechanism of feature linking in the visual cortex? Biol. Cybern., 1988, vol. 60, no. 2, p. 121.

    Article  CAS  PubMed  Google Scholar 

  72. Chapeton, J.I., Haque, R., Wittig, J.H., Jr., et al., Large-scale communication in the human brain is rhythmically modulated through alpha coherence, Curr. Biol., 2019, vol. 29, no. 17, p. 2801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Anokhin, P.K., Ocherki po fiziologii funktsional’nykh sistem (Essays on Physiology of Functioning Systems), Moscow: Meditisna, 1975.

  74. Edelman, G.M., Gally, J.A., and Baars, B.J., Biology of consciousness, Front. Psychol., 2011, vol. 2, p. 4.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Ugryumov, M., Compensatory capabilities of the brain, Nauka Ross., 2008, no. 3, p. 4.

  76. Gulyaeva, N.V., Physiological continuum of plasticity and pathology of the nervous system, Integr. Fiziol., 2020, vol. 1, no. 4, p. 294.

    Google Scholar 

Download references

Funding

This work was supported by State Program of the Russian Federation 47 State Enterprise “Scientific and Technological Development of the Russian Federation” (2019–2030) (topic 63.1) and the Russian Foundation for Basic Research (project no. 20-015-00300 A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Berlov.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies involving animals or human participants performed by any of the authors.

CONFLICT OF INTEREST

The authors declare no obvious and potential conflicts of interest related to the publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berlov, D.N., Nikitina, E.A. Functional Ensembles in the Brains of Humans and Animals. Hum Physiol 47, 579–586 (2021). https://doi.org/10.1134/S0362119721050030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119721050030

Keywords:

Navigation