Skip to main content
Log in

Cathepsin G in the immune defense of the human duodenum: New sources for biosynthesis

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Proteases play a key role in the physiological processes of the small intestine, supporting its normal physiological functions as a part of the digestive system, in which hydrolysis and assimilation of nutrients are implemented. A high concentration of antigens in the intestinal lumen activates immunity and stimulates a chronic weakly expressed inflammatory response in a normal gastrointestinal tract (GIT). Cathepsin G, a serine protease controlling the functional state of immune cells, directly participates in the complicated system for the regulation of balance between physiological and pathological inflammations. To determine the role of cathepsin G in the small intestine, an immunofluorescent investigation of biopsies from the human duodenal mucosa were investigated using the confocal immunofluorescence microscopy method and human antibodies to cathepsin G. It has been shown for the first time that cathepsin G, which was regarded conventionally as one of the effectors of the inflammatory process, is a constitutive enzyme of the human duodenum and is constantly present in its normal mucosa. The new cell sources for the cathepsin G biosynthesis identified: intraepithelial lymphocytes (IELs), lamina propria lymphocytes, CD14-positive intestinal macrophages, and Paneth cells, which are specialized epitheliocytes of intestinal glands. Our data on the cathepsin G expression by immunocytes and Paneth cells in the duodenum allow us to attribute cathepsin G to the main proteases of intestinal immunity, which indicates the important role of this enzyme in the regulation of human GIT functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zamolodchikova, T.S., Serine proteases in immune protection of the small intestine, Biochemistry (Moscow), 2013, vol. 78, no. 3, p. 213.

    Article  CAS  Google Scholar 

  2. Meyer-Hoffert, U., Neutrophil-derived serine proteases modulate innate immune responses, Front. Biosci., Landmark Ed., 2009, vol. 14, p. 3409.

    Article  CAS  Google Scholar 

  3. Zamolodchikova, T.S., Shcherbakov, I.T., Khrennikov, B.N., and Svirshchevskaya, E.V., Expression of duodenase-like protein in epitheliocytes of Brunner’s glands in human duodenal mucosa, Biochemistry (Moscow), 2013, vol. 78, no. 8, p. 954.

    Article  CAS  Google Scholar 

  4. Pugin, J., Heumann, I.D., Tomasz, A., et al., CD14 is a pattern recognition receptor, Immunity, 1994, vol. 1, no. 6, p. 509.

    Article  CAS  PubMed  Google Scholar 

  5. Cheroutre, H., Lambolez, F., and Mucida, D., The light and dark sides of intestinal intraepithelial lymphocytes, Nat. Rev. Immunol., 2011, vol. 11, no. 7, p. 445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schmitz-Moormann, P., Schmidt-Slørdahl, R., Peter, J.H., and Massarrat, S., Morphometric studies of normal and inflamed duodenal mucosa, Pathol., Res. Pract., 1980, vol. 167, nos. 2–4, p. 313.

    Article  CAS  Google Scholar 

  7. Wang, J., Sjöberg, S., Tang, T.T., et al., Cathepsin G activity lowers plasma LDL and reduces atherosclerosis, Biochim. Biophys. Acta, 2014, vol. 1842, no. 11, p. 2174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Burster, T., Macmillan, H., Hou, T., et al., Cathepsin G: Roles in antigen presentation and beyond, Mol. Immunol., 2010, vol. 47, no. 4, p. 658.

    Article  CAS  PubMed  Google Scholar 

  9. Schenk, M. and Mueller, Ch., Adaptations of intestinal macrophages to an antigen-rich environment, Semin. Immunol., 2007, vol. 19, no. 2, p. 84.

    Article  CAS  PubMed  Google Scholar 

  10. Kurashima, Y., Goto, Y., and Kiyono, H., Mucosal innate immune cells regulate both gut homeostasis and intestinal inflammation, Eur. J. Immunol., 2013, vol. 43, no. 12, p. 3108.

    Article  CAS  PubMed  Google Scholar 

  11. Clevers, H.C. and Bevins, C.L., Paneth cells: Maestros of the small intestinal crypts, Annu. Rev. Physiol., 2013, vol. 75, p. 289.

    Article  CAS  PubMed  Google Scholar 

  12. Tang, Q.J., Wang, L.M., Tao, K.Z., et al., Expression of polymeric immunoglobulin receptor mRNA and protein in human paneth cells: Paneth cells participate in acquired immunity, Am. J. Gastroenterol., 2006, vol. 101, no. 7, p. 1625.

    Article  CAS  PubMed  Google Scholar 

  13. Hasan, M., Hay, F., Sircus, W., and Ferguson, A., Nature of the inflammatory cell infiltrate in duodenitis, J. Clin. Pathol., 1983, vol. 36, no. 3, p. 280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kamada, N., Hisamatsu, T., Okamoto, S., et al., Unique CD14 intestinal macrophages contribute to the pathogenesis of Crohn disease via IL-23/IFN-gamma axis, J. Clin. Invest., 2008, vol. 118, no. 6, p. 2269.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Akula, S., Thorpe, M., Boinapally, V., and Hellman, L., Granule associated serine proteases of hematopoietic cells–an analysis of their appearance and diversification during vertebrate evolution, PLoS One, 2015, vol. 10, no. 11, p. e0143091.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Pang, G., Buret, A., and Batey, R.T., Morphological, phenotypic and functional characteristics of a pure population of CD56+ CD16-CD3-large granular lymphocytes generated from human duodenal mucosa, Immunology, 1993, vol. 79, no. 3, p. 498.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Dabek, M., Ferrier, L., Roka, R., et al., Luminal cathepsin G and protease-activated receptor 4: A duet involved in alterations of the colonic epithelial barrier in ulcerative colitis, Am. J. Pathol., 2009, vol. 175, no. 1, p. 207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dzau, V.J., Gonzalez, D., Kaempfer, C., et al., Human neutrophils release serine proteases capable of activating prorenin, Circ. Res., 1987, vol. 60, no. 4, p. 595.

    Article  CAS  PubMed  Google Scholar 

  19. Shorning, B.Y., Jardé, T., McCarthy, A., et al., Intestinal renin-angiotensin system is stimulated after deletion of Lkb1, Gut, 2012, vol. 61, no. 2, p. 202.

    Article  CAS  PubMed  Google Scholar 

  20. Wong, T.P., Debnam, E.S., and Leung, P.S., Involvement of an enterocyte renin-angiotensin system in the local control of SGLT1-dependent glucose uptake across the rat small intestinal brush border membrane, J. Physiol., 2007, vol. 584, p. 613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Zamolodchikova.

Additional information

Original Russian Text © T.S. Zamolodchikova, I.T. Shcherbakov, B.N. Khrennikov, B.B. Shoibonov, E.V. Svirshchevskaya, 2017, published in Fiziologiya Cheloveka, 2017, Vol. 43, No. 3, pp. 102–110.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamolodchikova, T.S., Shcherbakov, I.T., Khrennikov, B.N. et al. Cathepsin G in the immune defense of the human duodenum: New sources for biosynthesis. Hum Physiol 43, 326–333 (2017). https://doi.org/10.1134/S0362119717020177

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119717020177

Keywords

Navigation