Skip to main content

Proteases in the Mammalian Digestive System

  • Chapter
  • First Online:
Proteases: Structure and Function

Abstract

The digestive system works in concert with the other organ systems of the body, and with the external environment, in particular ingested material and microorganisms. The pathway from the point of ingestion to the point of excretion is long and tortuous, and is made up of dozens of niches with specialized physiologic roles and constellations of proteases. In each of these niches, there is a characteristic array of molecules from the lumen to the surface of the cells lining the alimentary tract (Hopfer 2011). The cellular level is a heterogeneous mosaic of resident and transient cells with special functions and arrays of proteases. This chapter will focus on the mammalian proteases found in the lumen and on the cell surface of the alimentary tract, both membrane-bound and secreted proteases. The proteases of the intestinal bacteria, mainly in the lower intestine, are dealt with in separate chapters, but structures and products of bacteria will be addressed as substrates and as factors that affect protease expression and activity. Similarly, the proteases of immune cells, which are transient members of the digestive system, are dealt with separately in other chapters, but their roles in the alimentary tract are inextricably enmeshed in normal physiologic processes of digestion and pathologic responses to injury. Accordingly, this review of proteases in the digestive system will focus on the human system beginning anatomically at the oral cavity, and proceed to the esophagus, stomach, and the niches of the intestinal tract, ending with the colon. Representative protease functions in intestinal pathobiology are discussed in the anatomical sections and in separate sections at the end of the chapter. There is detailed information on the many proteases mentioned in this chapter in the Handbook of Proteolytic Enzymes, second Edition (Barrett et al. 2004) and the third Edition (Rawlings and Salvesen 2013), and in the MEROPs database (http://www.merops.sanger.ac.uk).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams MN, Ramachandran R, Yau MK, Suen JY, Fairlie DP, Hollenberg MD, Hooper JD (2011) Structure, function and pathophysiology of protease activated receptors. Pharmacol Ther 130:248–282

    CAS  PubMed  Google Scholar 

  • Affara NI, Andreu P, Coussens LM (2009) Delineating protease functions during cancer development. Methods Mol Biol 539:1–32

    CAS  PubMed  Google Scholar 

  • Andrén A (1992) Production of prochymosin, pepsinogen and progastricsin, and their cellular and intracellular localization in bovine abomasal mucosa. Scand J Clin Lab Invest Suppl 210:59–64

    PubMed  Google Scholar 

  • Antalis TM, Shea-Donohue T, Vogel SN, Sears C, Fasano A (2007) Mechanisms of disease: protease functions in intestinal mucosal pathobiology. Nat Clin Pract Gastroenterol Hepatol 4:393–402

    CAS  PubMed Central  PubMed  Google Scholar 

  • Antalis TM, Buzza MS, Hodge KM, Hooper JD, Netzel-Arnett S (2010) The cutting edge: membrane-anchored serine protease activities in the pericellular microenvironment. Biochem J 428:325–346

    CAS  PubMed Central  PubMed  Google Scholar 

  • Banerjee S, Oneda B, Yap LM, Jewell DP, Matters GL, Fitzpatrick LR, Seibold F, Sterchi EE, Ahmad T, Lottaz D, Bond JS (2009) MEP1A for meprin A metalloprotease subunit is a susceptibility gene for inflammatory bowel disease. Mucosal Immunol 2:220–231

    CAS  PubMed Central  PubMed  Google Scholar 

  • Banerjee S, Jin G, Bradley SG, Matters GL, Gailey RD, Crisman JM, Bond JS (2011) Balance of meprin A and B in mice affects the progression of experimental inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol 300:G273–G282

    CAS  PubMed  Google Scholar 

  • Bankus JM, Bond JS (1996) Expression and distribution of meprin protease subunits in mouse intestine. Arch Biochem Biophys 331:87–94

    CAS  PubMed  Google Scholar 

  • Barrett AJ, Woessner F, Rawlings N (eds) (2004) Handbook of proteolytic enzymes, 2nd edn. Academic Press, London

    Google Scholar 

  • Billich CO, Levitan R (1969) Effects of sodium concentration and osmolality on water and electrolyte absorption from the intact human colon. J Clin Invest 48:1336–1347

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bond JS, Matters GL, Banerjee S, Dusheck RE (2005) Meprin metalloprotease expression and regulation in kidney, intestine, urinary tract infections and cancer. FEBS Lett 579:3317–3322

    CAS  PubMed  Google Scholar 

  • Bond JS, Gailey R, Bradley SG (2006) Meprin metalloproteases in intestinal disease. In: Naim HY, Zimmer K-P (eds) The brush border membrane – from molecular cell biology to clinical pathology. Verlagsgesellschaft mbH, Heilboronn, pp 122–135

    Google Scholar 

  • Brandt I, Lambeir A-M, Ketelslegers J-M, Vanderheyden M, Scharpé S, De Meester I (2006) Dipeptidyl-peptidase IV converts intact B-Type natriuretic peptide into Its des-SerPro form. Clin Chem 52:82–87

    CAS  PubMed  Google Scholar 

  • Bruewer M, Luegering A, Kucharzik T, Parkos CA, Madara JL, Hopkins AM, Nusrat A (2003) Proinflammatory cytokines disrupt epithelial barrier function by apoptosis-independent mechanisms. J Immunol 171:6164–6172

    CAS  PubMed  Google Scholar 

  • Busek P, Malik R, Sedo A (2004) Dipeptidyl peptidase IV activity and/or structure homologues (DASH) and their substrates in cancer. Int J Biochem Cell Biol 36:408–421

    CAS  PubMed  Google Scholar 

  • Buzza MS, Netzel-Arnett S, Shea-Donohue T, Zhao A, Lin CY, List K, Szabo R, Fasano A, Bugge TH, Antalis TM (2010) Membrane-anchored serine protease matriptase regulates epithelial barrier formation and permeability in the intestine. Proc Natl Acad Sci U S A 107:4200–4205

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chin AC, Vergnolle N, MacNaughton WK, Wallace JL, Hollenberg MD, Buret AG (2003) Proteinase-activated receptor 1 activation induces epithelial apoptosis and increases intestinal permeability. Proc Natl Acad Sci U S A 100:11104–11109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choi SY, Bertram S, Glowacka I, Park YW, Pohlmann S (2009) Type II transmembrane serine proteases in cancer and viral infections. Trends Mol Med 15:303–312

    CAS  PubMed  Google Scholar 

  • Craig SS, Mader C, Bond JS (1991) Immunohistochemical localization of the metalloproteinase meprin in salivary glands of male and female mice. J Histochem Cytochem 39:123–129

    CAS  PubMed  Google Scholar 

  • Cunliffe RN (2003) Alpha-defensins in the gastrointestinal tract. Mol Immunol 40:463–467

    CAS  PubMed  Google Scholar 

  • Eggermont E, Molla AM, Rutgeerts L, Tytgat G (1971a) The source of human enterokinase. Lancet 2:369

    CAS  PubMed  Google Scholar 

  • Eggermont E, Molla AM, Tytgat G, Rutgeerts L (1971b) Distribution of enterokinase activity in the human intestine. Acta Gastroenterol Belg 34:655–662

    CAS  PubMed  Google Scholar 

  • El-Salhy M, Spangeus A (1998) Substance P in the gastrointestinal tract of non-obese diabetic mice. Scand J Gastroenterol 33:394–400

    CAS  PubMed  Google Scholar 

  • Engel M, Hoffmann T, Wagner L, Wermann M, Heiser U, Kiefersauer R, Huber R, Bode W, Demuth H-U, Brandstetter H (2003) The crystal structure of dipeptidyl peptidase IV (CD26) reveals its functional regulation and enzymatic mechanism. Proc Natl Acad Sci USA 100:5063–5068

    CAS  PubMed  Google Scholar 

  • Foster C, Aktar A, Kopf D, Zhang P, Guttentag S (2004) Pepsinogen C: a type 2 cell-specific protease. Am J Physiol Lung Cell Mol Physiol 286:L382–L387

    CAS  PubMed  Google Scholar 

  • Garcia-Caballero A, Ishmael SS, Dang Y, Gillie D, Bond JS, Milgram SL, Stutts MJ (2011) Activation of the epithelial sodium channel by the metalloprotease meprin b subunit. Channels 5:14–22

    CAS  PubMed  Google Scholar 

  • Goscinski MA, Suo Z, Nesland JM, Chen W-T, Zakrzewska M, Wang J, Zhang S, Flørenes VA, Giercksky K-E (2008a) Seprase, dipeptidyl peptidase IV and urokinase-type plasminogen activator expression in dysplasia and invasive squamous cell carcinoma of the Esophagus A Study of 229 cases from Anyang Tumor Hospital, Henan Province, China. Oncology 75:49–59

    CAS  PubMed  Google Scholar 

  • Goscinski MA, Suo Z, Nesland JM, Flørenes VA, Giercksky K-E (2008b) Dipeptidyl peptidase IV expression in cancer and stromal cells of human esophageal squamous cell carcinomas, adenocarcinomas and squamous cell carcinoma cell fines. Acta Pathol Microbiol Immunol Scand 116:823–831

    CAS  Google Scholar 

  • Green BD, Flatt PR, Bailey CJ (2006) Dipeptiudyl peptidase IV (DPP IV) inhibitors: a newly emerging class for the treatment of type 2 diabetes. Diab Vasc Dis Res 3:159–165

    PubMed  Google Scholar 

  • Gusman H, Travis J, Helmerhorst EJ, Potempa J, Troxler RF, Oppenheim FG (2001) Salivary histatin 5 is an inhibitor of both host and bacterial enzymes implicated in periodontal disease. Infect Immun 69:1402–1408

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hadorn B, Tarlow MJ, Lloyd JK, Wolff OH (1969) Intestinal enterokinase deficiency. Lancet 1:812–813

    CAS  PubMed  Google Scholar 

  • Hadorn B, Steiner N, Sumida C, Peters TJ (1971) Intestinal enterokinase. Mechanisms of tts “secretion” into the lumen of the small intestine. Lancet 1:165–166

    CAS  PubMed  Google Scholar 

  • Hahner S, Fassnacht M, Hammer F, Schammann M, Weismann D, Hansen IA, Allolio B (2005) Evidence against a role of human airway trypsin-like protease–the human analogue of the growth-promoting rat adrenal secretory protease–in adrenal tumourigenesis. Eur J Endocrinol 152:143–153

    CAS  PubMed  Google Scholar 

  • Hall EH, Crowe SE (2011) Environmental and lifestyle influences on disorders of the large and small intestine: implications for treatment. Dig Dis 29:249–254

    PubMed  Google Scholar 

  • Hassan MI, Toor A, Ahmad F (2010) Progastriscin: structure, function, and its role in tumor progression. J Mol Cell Biol 2:118–127

    CAS  PubMed  Google Scholar 

  • Hasty DL, Simpson WA (1987) Effects of fibronectin and other salivary macromolecules on the adherence of Escherichia coli to buccal epithelial cells. Infect Immun 55:2103–2109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Helmerhorst EJ, Sun X, Salih E, Oppenheim FG (2008) Identification of Lys-Pro-Gln as a novel cleavage site specificity of saliva-associated proteases. J Biol Chem 283:19957–19966

    CAS  PubMed  Google Scholar 

  • Hermon-Taylor J, Perrin J, Grant DA, Appleyard A, Bubel M, Magee AI (1977) Immunofluorescent localization of enterokinase in human small intestine. Gut 18:259–265

    CAS  PubMed  Google Scholar 

  • Hoogerwerf WA, Zou L, Shenoy M, Sun D, Micci MA, Lee-Hellmich H, Xiao SY, Winston JH, Pasricha PJ (2001) The proteinase-activated receptor 2 is involved in nociception. J Neurosci 21:9036–9042

    CAS  PubMed  Google Scholar 

  • Hooper JD, Clements JA, Quigley JP, Antalis TM (2001) Type II transmembrane serine proteases. Insights into an emerging class of cell surface proteolytic enzymes. J Biol Chem 276:857–860

    CAS  PubMed  Google Scholar 

  • Hopfer U (2011) Digestion and absorption of basic nutrition constituents. In: Devlin TM (ed) Textbook of biochemistry with clinical correlations, 7th edn. Wiley, Hoboken, NJ, pp 1029–1062

    Google Scholar 

  • Hyun E, Andrade-Gordon P, Steinhoff M, Vergnolle N (2008) Protease-activated receptor-2 activation: a major actor in intestinal inflammation. Gut 57:1222–1229

    CAS  PubMed  Google Scholar 

  • Imamura T (2003) The role of gingipains in the pathogenesis of periodontal disease. Periodontol 74:111–118

    CAS  Google Scholar 

  • Inci K, Edebo A, Olbe L, Casselbrant A (2009) Expression of protease-activated-receptor 2 (PAR-2) in human esophageal mucosa. Scand J Gastroenterol 44:664–671

    CAS  PubMed  Google Scholar 

  • Ingman T, Sorsa T, Konttinen YT, Liede K, Saari H, Lindy O, Suomalainen K (1993) Salivary collagenase, elastase- and trypsin-like proteases as biochemical markers of periodontal tissue destruction in adult and localized juvenile periodontitis. Oral Microbiol Immunol 8:298–305

    CAS  PubMed  Google Scholar 

  • Johnson GD, Hersh LB (1992) Cloning a rat meprin cDNA reveals the enzyme is a heterodimer. J Biol Chem 267:13505–13512

    CAS  PubMed  Google Scholar 

  • Kameoka J, Tanaka T, Nojima Y, Schlossman SF, Morimoto C (1993) Direct association of adenosine deaminase with a T cell activation antigen, CD26. Science 261:466–469

    CAS  PubMed  Google Scholar 

  • Kawabata A (2003) Gastrointestinal functions of proteinase-activated receptors. Life Sci 74:247–254

    CAS  PubMed  Google Scholar 

  • Kennedy S, Davis C, Abrams WR, Billings PC, Nagashunmugam T, Friedman H, Malamudl D (1998) Submandibular salivary proteases: lack of a role in anti-HIV activity. J Dent Res 77(7):1515–1519

    CAS  PubMed  Google Scholar 

  • Kleyman TR, Carattino MD, Hughey RP (2009) ENaC at the cutting edge: regulation of epithelial sodium channels by proteases. J Biol Chem 284:20447–20451

    CAS  PubMed  Google Scholar 

  • Korot’ko GF, Gotovtseva LP, Bulgakova VA (2002) Postprandial transformations of enzymatic and hormonal properties of saliva and blood. Ross Fiziol Zh Im I M Sechenova 88:396–405 (Article in Russian)

    PubMed  Google Scholar 

  • Kosa P, Szabo R, Molinolo AA, Bugge TH (2012) Suppression of Tumorigenicity-14, encoding matriptase, is a critical suppressor of colitis and colitis-associated colon carcinogenesis. Oncogene 31:3679–3695

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar JM, Bond JS (2001) Developmental expression of meprin metalloprotease subunits in ICR and C3H/He mouse kidney and intestine in the embryo, postnatally and after weaning. Biochim Biophys Acta 1518:106–114

    CAS  PubMed  Google Scholar 

  • Lambeir AM, Durinx C, Proost P, Van Damme J, Scharpé S, De Meester I (2001) Kinetic study of the processing by dipeptidyl-peptidase IV/CD26 of neuropeptides involved in pancreatic insulin secretion. FEBS Lett 507:327–330

    CAS  PubMed  Google Scholar 

  • Laukoetter MG, Bruewer M, Nusrat A (2006) Regulation of the intestinal epithelial barrier by the apical junctional complex. Curr Opin Gastroenterol 22:85–89

    PubMed  Google Scholar 

  • Li Y, Owyang C (1994) Endogenous cholecystokinin stimulates pancreatic enzyme secretion via vagal afferent pathway in rats. Gastroenterology 107:525–531

    CAS  PubMed  Google Scholar 

  • Lindfors K, Rauhavirta T, Stenman S, Mäki M, Kaukinen K (2012) In vitro models for gluten toxicity: relevance for celiac disease pathogenesis and development of novel treatment options. Exp Biol Med 237:119–125

    CAS  Google Scholar 

  • Liotta LA, Stetler-Stevenson WG, Steeg PS (1991) Cancer invasion and metastasis: positive and negative regulatory elements. Cancer Invest 9:543–551

    CAS  PubMed  Google Scholar 

  • List K (2009) Matriptase: a culprit in cancer? Future Oncol 5:97–104

    CAS  PubMed  Google Scholar 

  • List K, Szabo R, Molinolo A, Sriuranpong V, Redeye V, Murdock T, Burke B, Nielsen BS, Gutkind JS, Bugge TH (2005) Deregulated matriptase causes ras-independent multistage carcinogenesis and promotes ras-mediated malignant transformation. Genes Dev 19:1934–1950

    CAS  PubMed  Google Scholar 

  • List K, Bugge TH, Szabo R (2006) Matriptase: potent proteolysis on the cell surface. Mol Med 12:1–7

    CAS  PubMed Central  PubMed  Google Scholar 

  • List K, Currie B, Scharschmidt TC, Szabo R, Shireman J, Molinolo A, Cravatt BF, Segre J, Bugge TH (2007) Autosomal ichthyosis with hypotrichosis syndrome displays low matriptase proteolytic activity and is phenocopied in ST14 hypomorphic mice. J Biol Chem 282:36714–36723

    CAS  PubMed  Google Scholar 

  • List K, Kosa P, Szabo R, Bey AL, Wang CB, Molinolo A, Bugge TH (2009) Epithelial integrity is maintained by a matriptase-dependent proteolytic pathway. Am J Pathol 175:1453–1463

    CAS  PubMed  Google Scholar 

  • Lojda Z, Gossrau R (1983) Histochemical demonstration of enteropeptidase activity. New method with a synthetic substrate and its comparison with the trypsinogen procedure. Histochemistry 78:251–270

    CAS  PubMed  Google Scholar 

  • Lottaz D, Maurer CA, Hahn D, Buchler MW, Sterchi EE (1999) Nonpolarized secretion of human meprin alpha in colorectal cancer generates an increased proteolytic potential in the stroma. Cancer Res 59:1127–1133

    CAS  PubMed  Google Scholar 

  • MacNaughton WK (2005) Epithelial effects of proteinase-activated receptors in the gastrointestinal tract. Mem Inst Oswaldo Cruz 100(Suppl 1):211–215

    CAS  PubMed  Google Scholar 

  • Marchiando AM, Graham WV, Turner JR (2010) Epithelial barriers in homeostasis and disease. Annu Rev Pathol 5:119–144

    CAS  PubMed  Google Scholar 

  • Medina C, Radomski MW (2006) Role of matrix metalloproteinases in intestinal inflammation. J Pharmacol Exp Ther 318:933–938

    CAS  PubMed  Google Scholar 

  • Miller GS, List K (2013) The matriptase-prostasin proteolytic cascade in epithelial development and pathology. Cell Tissue Res 351(2):245–253

    CAS  PubMed  Google Scholar 

  • Misumi Y, Ikehara Y (2004) Dipeptidyl-peptidase IV. In: Barrett AJ, Rawlings ND, Woessner JF (eds) Cysteine, serine and threonine peptidases, vol 2, Handbook of proteolytic enzymes. Elsevier, San Diego, CA, pp 1905–1909

    Google Scholar 

  • Moriyama A, Kageyama T, Takahashi K (1983) Identification of monkey lung procathepsin D-II as a pepsinogen-C-like acid protease zymogen. Eur J Biochem 132:687–692

    CAS  PubMed  Google Scholar 

  • Mukherjee S, Roth MJ, Dawsey SM, Yan W, Rodriguez-Canales J, Erickson HS, Hu N, Goldstein AM, Taylor PR, Richardson AM, Tangrea MA, Chuaqui RF, Emmert-Buck MR (2010) Increased matrix metalloproteinase activation in esophageal squamous cell carcinoma. J Transl Med 8:91, http://www.translational-medicine.com/content/8/1/91

    PubMed Central  PubMed  Google Scholar 

  • Netzel-Arnett S, Buzza MS, Shea-Donohue T, Desilets A, Leduc R, Fasano A, Bugge TH, Antalis TM (2012) Matriptase protects against experimental colitis and promotes intestinal barrier recovery. Inflamm Bowel Dis 18:1303–1314

    PubMed Central  PubMed  Google Scholar 

  • Niemi LD, Johansson I (2004) Salivary statherin peptide-binding epitopes of commensal and potentially infectious Actinomyces spp. delineated by a hybrid peptide construct. Infect Immun 72:782–787

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nieminen A, Nordlund L, Uitto VJ (1993) The effect of treatment on the activity of salivary proteases and glycosidases in adults with advanced periodontitis. J Periodontol 64:297–301

    CAS  PubMed  Google Scholar 

  • Oberst MD, Singh B, Ozdemirli M, Dickson RB, Johnson MD, Lin CY (2003) Characterization of matriptase expression in normal human tissues. J Histochem Cytochem 51:1017–1025

    CAS  PubMed  Google Scholar 

  • Plow EF, Miles LA (1990) Plasminogen receptors in the mediation of pericellular proteolysis. Cell Differ Dev 32:293–298

    CAS  PubMed  Google Scholar 

  • Rao GJ, Nadler HL (1972) Deficiency of trypsin-like activity in saliva of patients with cystic fibrosis. J Pediatr 4:573–576

    Google Scholar 

  • Rawlings ND, Salvessen G (eds) (2013) Handbook of proteolytic enzymes, 3rd edn. Academic Press, London

    Google Scholar 

  • Reid WA, Vongsorasak L, Svasti J, Valler MJ, Kay J (1984) Identification of the acid proteinase in human seminal fluid as a gastricsin originating in the prostate. Cell Tissue Res 236:597–600

    CAS  PubMed  Google Scholar 

  • Reinhardt C, Bergentall M, Greiner TU, Schaffner F, Ostergren-Lunden G, Petersen LC, Ruf W, Backhed F (2012) Tissue factor and PAR1 promote microbiota-induced intestinal vascular remodelling. Nature 483:627–631

    CAS  PubMed  Google Scholar 

  • Richter C, Tanaka T, Yada RY (1998) Mechanism of activation of the gastric aspartic proteinases: pepsinogen, progastricsin and prochymosin. Biochem J 335:481–490

    CAS  PubMed  Google Scholar 

  • Roberts RM, Mathialagan N, Duffy JY, Smith GW (1995) Regulation and regulatory role of proteinase inhibitors. Crit Rev Eukaryot Gene Expr 5:385–436

    CAS  PubMed  Google Scholar 

  • Roff AN, Panganiban RP, Bond JS, Ishmael FT (2013) Post-transcriptional regulation of meprin a by the RNA binding proteins HuR and TTP. J Biol Chem 288(7):4733–4743

    CAS  PubMed  Google Scholar 

  • Roka R, Ait-Belgnaoui A, Salvador-Cartier C, Garcia-Villar R, Fioramonti J, Eutamene H, Bueno L (2007) Dexamethasone prevents visceral hyperalgesia but not colonic permeability increase induced by luminal protease-activated receptor-2 agonist in rats. Gut 56:1072–1078

    CAS  PubMed  Google Scholar 

  • Rosmann S, Hahn D, Lottaz D, Kruse MN, Stocker W, Sterchi EE (2002) Activation of human meprin-alpha in a cell culture model of colorectal cancer is triggered by the plasminogen-activating system. J Biol Chem 277:40650–40658

    PubMed  Google Scholar 

  • Salmela MT, Pender SL, Karjalainen-Lindsberg ML, Puolakkainen P, Macdonald TT, Saarialho-Kere U (2004) Collagenase-1 (MMP-1), matrilysin-1 (MMP-7), and stromelysin-2 (MMP-10) are expressed by migrating enterocytes during intestinal wound healing. Scand J Gastroenterol 39:1095–1104

    CAS  PubMed  Google Scholar 

  • Shan L, Molberg Ø, Parrot I, Hausch F, Filiz F, Gray GM, Sollid LM, Khosla C (2002) Structural basis for gluten intolerance in celiac sprue. Science 297:2275–2279

    CAS  PubMed  Google Scholar 

  • Silk DBA, Webb JPW, Lane AE, Clark ML, Dawson AM (1974) Functional differentiation of human jejunum and ileum: a comparison of the handling of glucose, peptides and amino acids. Gut 15:444–449

    CAS  PubMed  Google Scholar 

  • Steinhoff M, Buddenkotte J, Shpacovitch V, Rattenholl A, Moormann C, Vergnolle N, Luger TA, Hollenberg MD (2005) Proteinase-activated receptors: transducers of proteinase-mediated signaling in inflammation and immune response. Endocr Rev 26:1–43

    CAS  PubMed  Google Scholar 

  • Sterchi EE, Naim HY, Lentze MJ, Hauri HP, Fransen JAM (1988) N-benzoyl-L-tyrosyl-p-aminobenzoic acid hydrolase: a metalloendopeptidase of the human intestinal microvillus membrane which degrades biologically active peptides. Arch Biochem Biophys 265:105–118

    CAS  PubMed  Google Scholar 

  • Sterchi EE, Stöcker W, Bond JS (2008) Meprins, membrane-bound and secreted astacin metalloproteases. Mol Aspects Med 29:309–328

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sun X, Salih E, Oppenheim FG, Helmerhorst EJ (2009) Kinetics of histatin proteolysis in whole saliva and the effect on bioactive domains with metal-binding, antifungal, and wound-healing properties. FASEB J 23:2691–2701

    CAS  PubMed  Google Scholar 

  • Szabo R, Hudecz F, Reig F (2003) Interfacial interactions between poly[L-lysine]-based branched polypeptides and phospholipid model membranes. J Colloid Interface Sci 267:18–24

    CAS  PubMed  Google Scholar 

  • Tlaskalová-Hogenová H, Stepánková R, Hudcovic T, Tucková L, Cukrowska B, Lodinová-ZádnÚková R, Kozáková H, Rossmann P, Bártová J, Sokol D, Funda DP, Borovská D, Reháková Z, Sinkora J, Hofman J, Drastich P, Kokesová A (2004) Commensal bacteria (normal microflora), mucosal immunity and chronic inflammatory and autoimmune diseases. Immunol Lett 93:97–108

    Google Scholar 

  • Tsuzuki S, Murai N, Miyake Y, Inouye K, Hirayasu H, Iwanaga T, Fushiki T (2005) Evidence for the occurrence of membrane-type serine protease 1/matriptase on the basolateral sides of enterocytes. Biochem J 388:679–687

    CAS  PubMed  Google Scholar 

  • Vallejo JA, Ageitos JM, Poza M, Villa TG (2012) Short communication: a comparative analysis of recombinant chymosins. J Dairy Sci 95:609–613

    CAS  PubMed  Google Scholar 

  • Vergnolle N (2000) Review article: proteinase-activated receptors – novel signals for gastrointestinal pathophysiology. Aliment Pharmacol Ther 14:257–266

    CAS  PubMed  Google Scholar 

  • Vogel LK, Saebo M, Skjelbred CF, Abell K, Pedersen ED, Vogel U, Kure EH (2006) The ratio of Matriptase/HAI-1 mRNA is higher in colorectal cancer adenomas and carcinomas than corresponding tissue from control individuals. BMC Cancer 6:176

    PubMed Central  PubMed  Google Scholar 

  • Westerveld BD, Pals G, Bosma A, Defize J, Pronk JC, Frants RR, Eriksson AW, Meuwissen SG (1987) Gastric proteases in Barrett’s esophagus. Gastroenterology 93:774–778

    CAS  PubMed  Google Scholar 

  • Wilson CL, Schmidt AP, Pirila E, Valore EV, Ferri N, Sorsa T, Ganz T, Parks WC (2009) Differential processing of alpha- and beta-defensin precursors by matrix metalloproteinase-7 (MMP-7). J Biol Chem 284:8301–8311

    CAS  PubMed  Google Scholar 

  • Woods DE, Straus DC, Johanson WG Jr, Bass JA (1981a) Role of salivary protease activity in adherence of Gram-negative bacilli to mammalian buccal epithelial cells in vivo. J Clin Invest 68:1435–1440

    CAS  PubMed Central  PubMed  Google Scholar 

  • Woods DE, Straus DC, Johanson WG Jr, Bass JA (1981b) Role of fibronectin in the prevention of adherence of Pseudomonas aeruginosa to buccal cells. J Infect Dis 143:784–790

    CAS  PubMed  Google Scholar 

  • Yuan X, Zheng X, Lu D, Rubin DC, Pung CY, Sadler JE (1998) Structure of murine enterokinase (enteropeptidase) and expression in small intestine during development. Am J Physiol 274:G342–G349

    CAS  PubMed  Google Scholar 

  • Zhang Y, Cai X, Schlegelberger B, Zheng S (1998) Assignment1 of human putative tumor suppressor genes ST13 (alias SNC6) and ST14 (alias SNC19) to human chromosome bands 22q13 and 11q24–>q25 by in situ hybridization. Cytogenet Cell Genet 83:56–57

    CAS  PubMed  Google Scholar 

  • Zheng XL, Kitamoto Y, Sadler JE (2009) Enteropeptidase, a type II transmembrane serine protease. Front Biosci (Elite Ed) 1:242–249

    Google Scholar 

  • Zhu L, Tamvakopoulos C, Xie D, Dragovic J, Shen X, Fenyk-Melody JE, Schmidt K, Bagchi A, Griffin PR, Thornberry NA, Sinha Roy R (2003) The role of dipeptidyl peptidase IV in the cleavage of glucagon family peptides: in vivo metabolism of pituitary adenylate cyclase activating polypeptide-(1-38). J Biol Chem 278:22418–22423

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith S. Bond .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Bradley, S.G., Antalis, T.M., Bond, J.S. (2013). Proteases in the Mammalian Digestive System. In: Brix, K., Stöcker, W. (eds) Proteases: Structure and Function. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0885-7_11

Download citation

Publish with us

Policies and ethics