Skip to main content
Log in

Relationships between the flexibility of cognitive performance and the α-rhythm response to conditioning stimuli

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

A group of healthy adults (n = 35) has been instructed to recognize the emotionally negative face when exposed to the conditioning visual Go/NoGo stimuli in the middle of a 16-s interval that elapsed between the set (facial expression) and triggering stimuli. Local changes in the low-frequency a-oscillations in response to the conditioning stimuli (desynchronization after a positive Go stimulus and synchronization after an inhibitory NoGo stimulus) take place in the postfrontal and anterior temporal lobes of the left hemisphere, i.e., in the cortical areas directly involved in speech processes. In subjects with a flexible set towards recognition, synchronization of α-rhythm was observed after the inhibitory NoGo stimulus. This was not the case in the subjects with a stable set. Thus, new evidence is obtained to confirm that inducible synchronization of α-oscillations testifies to an enhancement of the descending inhibitory control from the prefrontal cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Uznadze, D.N., Experimental principles of set psychology, in Eksperimental’nye issledovaniya po psikhologii ustanovki (Experimental Studies in Set Psychology), Tbilisi: Akad. Nauk GSSR, 1958, p. 5.

    Google Scholar 

  2. Kostandov, E.A., Cheremushkin, E.A., Yakovenko, I.A., and Petrenko, N.E., Induced synchronization of α-rhythm in intervals between visual stimuli at different extent of the cognitive set flexibility, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2013, vol. 63, no. 6, p. 687.

    CAS  Google Scholar 

  3. Kostandov, E.A., Role of the descending inhibitory control in flexibility of recognition of the emotional facial expression, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2014, vol. 64, no. 4, p. 412.

    CAS  Google Scholar 

  4. Kostandov, E.A., Cheremushkin, E.A., Yakovenko, I.A., and Petrenko, N.E., Changes in the rhythm upon introduction of Go/NoGo stimuli in the context of an experiment with a set to an angry face, Hum. Physiol., 2014, vol. 40, no. 1, p. 8.

    Article  Google Scholar 

  5. Klimesch, W., Evoked alpha and early access to the knowledge system: the P1 inhibition timing hypothesis, Brain Res., 2011, vol. 1408, p. 52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Klimesch, W., Alpha-band oscillations, attention, and controlled access to stored information, Trends Cogn. Sci., 2012, vol. 16, no. 12, p. 606.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Sauseng, P., Feldheim, J.F., Freunberger, R., and Hummel, F.C., Right prefrontal TMS disrupts interregional anticipatory EEG alpha activity during shifting of visuospatial attention, Front. Psychol., 2011, vol. 2, p. 241.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Sauseng, P., Brain oscillations: phase-locked EEG α controls perception, Current Biology, 2012, vol. 22, no. 9, p. 306.

    Article  Google Scholar 

  9. Sauseng, P., Gerloff, Ch., and Hummel, F.C., Two brakes are better than one: the neural bases of inhibitory control of motor memory traces, Neuroimage, 2013, vol. 65, p. 52.

    Article  PubMed  Google Scholar 

  10. Ekman, P. and Friesen, W.V., Pictures of Facial Affect, Palo Alto (CA): Consult Psychol. Press, 1976.

    Google Scholar 

  11. Klimesch, W., EEG α and θ oscillations reflect cognitive and memory performance: a review and analysis, Brain Res. Rev., 1999, vol. 29, nos. 2–3, p. 169.

    Article  CAS  PubMed  Google Scholar 

  12. Kozlov, M.K., Significance of the variation characteristics of the preand post-stimulus EEG as judged from ξ2 test, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2009, vol. 59, no. 2, p. 281.

    Google Scholar 

  13. Kostandov, E.A., Effect of context on the plasticity of cognitive activity, Hum. Physiol., 2010, vol. 36, no. 5, p. 510.

    Article  Google Scholar 

  14. Kostandov, E.A., Cheremushkin, E.A., and Ashkinazi, M.L., Changes in emotional face expression recognition caused by an additional visuospatial task, Hum. Physiol., 2011, vol. 37, no. 2, p. 129.

    Article  Google Scholar 

  15. Klimesch, W., Sauseng, P., and Hanslmayr, S., EEG α oscillations: the inhibition-timing hypothesis, Brain Res. Rev., 2007, vol. 53, no. 1, p. 63.

    Article  PubMed  Google Scholar 

  16. Babiloni, C., Miniussi, C., Babiloni, F., et al., Sub-second “temporal attention” modulates alpha rhythms. a high-resolution EEG study, Cogn. Brain Res., 2004, vol. 19, no. 3, p. 259.

    Article  Google Scholar 

  17. Buschman, T.J. and Miller, E.K., Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices, Science, 2007, vol. 315, p. 1860.

    Article  CAS  PubMed  Google Scholar 

  18. Chaumon, M., Kveraga, K., Barrett, L.F., and Bar, M., Visual predictions in the orbitofrontal cortex rely on associative content, Cereb. Cortex, 2014, vol. 24, no. 11, p. 2899.

    Article  PubMed  Google Scholar 

  19. Coull, J.T. and Nobre, A.C., Where and when to pay “attention:” the neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI, J. Neurosci., 2008, vol. 18, p. 7426.

    Google Scholar 

  20. D’Esposito, M., From cognitive to neural models of working memory, Phil. Trans. R. Soc., 2007, vol. 362, p. 761.

    Article  Google Scholar 

  21. Ivry, R. and Schlerf, J., Dedicated and intrinsic models of time perception, Trends Cogn. Sci, 2008, vol. 12, p. 273.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Gazzaley, A. and Nobre, A., Top-down modulation: bridging selective attention and working memory, Trends Cogn. Sci., 2012, vol. 16, no. 2, p. 129.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Myers, N.E., Stokes, M.G., Walther, L., and Nobre, A.C., Oscillatory brain state predicts variability in working memory, J. Neurosci., 2014, vol. 34, no. 23, p. 7735.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Panichello, M.F., Cheung, O.S., and Bar, M., Predictive feedback and conscious visual experience, Front. Psychol., 2013, vol. 3, p. e620.

    Article  Google Scholar 

  25. Yumoto, N., Lu, X., Henry, Tr., et al., Neural correlate of the processing of multi-second time intervals in primate prefrontal cortex, PLoS One, 2011, vol. 6, no. 4., p. e19168.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Kostandov.

Additional information

Original Russian Text © E.A. Kostandov, E.A. Cheremushkin, I.A. Yakovenko, N.E. Petrenko, 2015, published in Fiziologiya Cheloveka, 2015, Vol. 41, No. 5, pp. 16–27.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostandov, E.A., Cheremushkin, E.A., Yakovenko, I.A. et al. Relationships between the flexibility of cognitive performance and the α-rhythm response to conditioning stimuli. Hum Physiol 41, 468–477 (2015). https://doi.org/10.1134/S0362119715050060

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119715050060

Keywords

Navigation