Skip to main content
Log in

Changes in the Spatial Synchronization of Oscillations of Cortical Potentials in the α Range after Conditioning Go/No-Go Stimuli

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Studies in healthy subjects (n = 35) using a model based on a cognitive set to an angry facial expression showed that use of positive and inhibitory Go/No-Go stimuli during the interstimulus period can produce marked changes in the top-down inhibitory influences of the prefrontal cortex on cortical areas involved in visual recognition, thus influencing set plasticity. The cortical topography of top-down influences in response to No-Go stimuli was determined in terms of local changes in the power of oscillations in potentials in the α range. Changes in spatial synchronization of α oscillations occurred only in the low-frequency range and depended on the level of set plasticity. In rigid forms of the set, coherence connections between the prefrontal cortex and other cortical zones were clearly more marked in the left hemisphere. In rigid forms of cognitive activity, left-hemisphere activation, with greater involvement of the speech and semantic functions, appears to play a compensatory role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bar, M. A., Kassam K. S., Ghuman, A. S., et al., “Top-down facilitation of visual recognition,” Proc. Natl. Acad. Sci. USA., 103, No. 2, 449–554 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bendat, J. S. and Piersol, A. G., Random Data: Analysis and Measurement Procedures [Russian translation], Mir, Moscow (1989).

  3. Berger, B., Minari, K., T., Liuzzi, G., et al., “EEG oscillatory phase-dependent markers of corticospinal excitability in the resting brain,” Biomed Res Int.,” 2014, 936096 (2014).

  4. Buschman, T. J. and Miller, E. K., “Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices,” Science, 315, 1860–1862 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Ekman, P. and Friesen W. V. Pictures of Facial Affect, Consulting Psychologists Press., Palo Alto (CA) (1976).

  6. Fenske, M. J., Aminoff, E., Gronau, N., and Bar, M., “Top-down facilitation of visual object recognition: object-based and context-based contributions,” Prog. Brain Res., 155, 3–21 (2006).

    Article  PubMed  Google Scholar 

  7. Klimesch, W., “Alpha-band oscillations, attention, and controlled access to stored information,” Trends Cogn. Sci., 16, No. 12, 606–617 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Klimesch, W., “Evoked alpha and early access to the knowledge system: The PI inhibition timing hypothesis,” Brain Res., 1408, 52–71 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Klimesch, W., Sauseng, P., and Hanslmayr, S., “EEG alpha oscillations: the in hibition-timing hypothesis,” Brain Res. Rev., 53, No. 1, 63–88 (2007).

    Article  PubMed  Google Scholar 

  10. Kostandov, E. A. and Cheremushkin, E. A., “Spatial synchronization and the power of oscillations in cortical potentials in the α and θ rhythms after Go/NoGo signals,” Fiziol. Cheloveka, 40, No. 6, 67–74 (2014).

    CAS  PubMed  Google Scholar 

  11. Kostandov, E. A., Cheremushkin, E. A., Yakovenko, I. A., and Petrenko, N. E., “Changes in the α rhythm on addition of Go/NoGo signals to the context of experiments with a set to an angry face,” Fiziol. Cheloveka, 40, No. 1, 13–25 (2014).

    CAS  PubMed  Google Scholar 

  12. Kostandov, E. A., Cheremushkin, E. A., Yakovenko, I. A., and Petrenko, N. E., “Relationship between the plasticity of cognitive activity and α rhythm responses to conditioning signals,” Fiziol. Cheloveka, 41, No. 5, 14–27 (2015).

    Google Scholar 

  13. Kostandov, E. A., Kurova, N. S., and Cheremushkin, E. A., “Changes in cortical electrical activity on formation of a set and in cods of loading on working memory,” Zh. Vyssh. Nerv. Deyat., 54, No. 3, 340–346 (2004).

    Google Scholar 

  14. Kostandov, E. A., Kurova, N. S., Cheremushkin, E. A., and Yakovenko, I. A, “Relationship between a set and the involvement of the ventral and dorsal visual systems in cognitive activity,” Zh. Vyssh. Nerv. Deyat., 55, No. 2, 170–177 (2005).

    CAS  Google Scholar 

  15. Kurganskii, A. V., “Some questions in studies of corticocortical functional connections using a vector autoregression model of the multichannel EEG,” Zh. Vyssh. Nerv. Deyat., 60, No. 6, 740–759 (2010).

    CAS  Google Scholar 

  16. Kveraga, K., Ghuman, A. S., Kassam, K. S., et al., “Early onset of neural synchronization in the contextual associations network,” Proc. Natl. Acad. Sci. USA, 108, No. 8, 3389–3394 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee, T. G. and D’Esposito, M., “The Dynamic Nature of TopDown Signais Originating from Prefrontal Cortex: A Combined fMRI-TMS Study,” J. Neurosci., 32, No. 44, 15458–15466 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Livanov, M. N., Temporospatial Organization of Potentials and Systems Activity of the Brain, Nauka, Moscow (1989).

  19. Rappelsberger, P., “Probability mapping of power and coherence: Technical aspects,” in: EEG and Thinking, Petsche, H. and Etlinger S. (eds.), Oesterreichische Akad. Wissenschaften, Vienna (1998), pp. 63–78.

  20. Rappelsberger, P., Lacroix, D., and Petsche, H., “Amplitude and coherence mapping: its application in psycho- and pathophysiological studies,” in : Quantitative EEG Analysis – Clinical Utility and New Methods, Rother, M. and Zwiener U. (eds.), Universitataverlag, Jena (1993), pp. 179–186.

  21. Sauseng, P., “Brain Oscillations: Phase-Locked EEG Alpha Controls Perception,” Curr. Biol., 22, No. 9, 306–308 (2012).

    Article  Google Scholar 

  22. Sauseng, P., Feldheim, J. F., Freunberger, R., and Hummel, F. C., “Right prefrontal TMS disrupts interregional anticipatory EEG alpha activity during shifting of visu-ospatial attention,” Front. Psychol., 2, 241–300 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sauseng, P., Gerloff C., and Hummel, F. C., “Two brakes are better than one: The neural bases of inhibitory control of motor memory traces,” Neuroimage, 65, 52–58 (2013).

    Article  PubMed  Google Scholar 

  24. Uznadze, D. N., “Experimental basis of set psychology,” in: Experimental Studies of Set Psychology, Academy of Sciences of the Georgian SSR Press, Tbilisi (1958), pp. 5–126.

  25. Walter, D. O. and Leuchter, A. F., “A tutorial on classical computer analysis of EEGs: spectra and coherences,” in: Analysis of the Electrical Activity of the Brain, Angeleir, F. et al. (eds.), Wiley, Chichester, England (1997), pp. 105–123.

    Google Scholar 

  26. Yumoto, N., Lu, X., Henry T. R. et al., “Neural correlate of the processing of multi-second time intervals in primate prefrontal cortex,” PLoS One, 6, No. 4, e19168.(2011).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Kostandov.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 65, No. 6, pp. 676–684, November–December, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostandov, E.A., Cheremushkin, E.A. Changes in the Spatial Synchronization of Oscillations of Cortical Potentials in the α Range after Conditioning Go/No-Go Stimuli. Neurosci Behav Physi 47, 228–234 (2017). https://doi.org/10.1007/s11055-016-0388-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-016-0388-5

Keywords

Navigation