Skip to main content
Log in

Neuronal mechanisms of motor signal transmission in the thalamic ventrooral nucleus in spasmodic torticollis patients

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

A microelectrode technique was used to study the neuronal mechanisms of motor signal transmission in the ventrooral internus nucleus (Voi) of the motor thalamus during voluntary and involuntary pathological (dystonic) movements in patients with spasmodic torticollis. Voi cell elements proved highly reactive to various functional (mostly motor) tests. An activity analysis of 55 Voi neurons detected during nine stereotactic operations revealed, first, a difference in neuronal mechanisms of motor signal transmission for voluntary movements that do or do not involve the affected axial muscles of the neck and for passive and abnormal involuntary dystonic movements. Second, a sensory component was found to play a key role in the mechanisms of sensorimotor interactions during voluntary and involuntary dystonic head and neck movements activating the axial muscles of the neck. Third, rhythmic and synchronized activity of Voi neurons was shown to play an important role in motor signal transmission during voluntary and passive movements. The Voi nucleus was directly implicated in the mechanisms of involuntary head movements and tension of the neck muscles in spasmodic torticollis. The results can be used to identify the Voi nucleus of the thalamus during stereotactic neurosurgery in order to select the optimal destruction or stimulation target and to reduce the postoperative effects in spasmodic torticollis patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Percheron, G., Francois, C., Talbi, B., et al., The primate motor thalamus, Brain Res. Brain Res. Rev., 1996, vol. 22, p. 93.

    Article  CAS  PubMed  Google Scholar 

  2. Krack, P., Dostrovsky, J., Ilinsky, I., et al., Surgery of the motor thalamus: Problems with the present nomenclatures, Mov. Disord., 2002, vol. 17, no. 3, p. S2.

    Article  PubMed  Google Scholar 

  3. Ilinsky, I.A. and Kultas-Ilinsky, K., Motor thalamic circuits in primates with emphasis on the area targeted in treatment of movement disorders, Mov. Disord., 2002, vol. 17, no. 3, p. S9.

    Article  PubMed  Google Scholar 

  4. Hamani, C., Dostrovsky, J.O., and Lozano, A.M., The motor thalamus in neurosurgery, Neurosurgery, 2006, vol. 58, p. 146.

    Article  PubMed  Google Scholar 

  5. Kuramoto, E., Fujiyama, F., Nakamura, K.C., et al., Complementary distribution of glutamatergic cerebellar and GABAergic basal ganglia afferents to the rat motor thalamic nuclei, Eur. J. Neurosci., 2011, vol. 33, p. 95.

    Article  PubMed  Google Scholar 

  6. Nakamura, K., Sharott, A., and Magill, P., Temporal coupling with cortex distinguishes spontaneous neuronal activities in identified basal ganglia-recipient and cerebellar-recipient zones of the motor thalamus, Cerebral Cortex, 2014, vol. 24, no. 1, p. 81.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Van Donkelaar, P., Stein, J.F., Passingham, R.E., and Miall, R.C., Neuronal activity in the primate motor thalamus during visually triggered and internally generated limb movements, J. Neurophysiol., 1999, vol. 82, no. 2, p. 934.

    PubMed  Google Scholar 

  8. Kurata, K., Activity properties and location of neurons in the motor thalamus that project to the cortical motor areas in monkeys, J. Neurophysiol., 2005, vol. 94, p. 550.

    Article  PubMed  Google Scholar 

  9. Hassler, R. and Dieckmann, G., Stereotactic treatment of different kinds of spasmodic torticollis, Confin. Neurol., 1970, vol. 32, p. 135.

    Article  CAS  PubMed  Google Scholar 

  10. Loher, T.J., Pohle, T., and Krauss, J.K., Functional stereotactic surgery for treatment of cervical dystonia: Review of the experience from the lesional era, Stereotact. Funct. Neurosurg., 2004, vol. 82, p. 1.

    Article  PubMed  Google Scholar 

  11. Schaltenbrand, G. and Baily, P., Introduction to Stereotaxic with an Atlas of the Human Brain (Stuttgart, Thieme, 1959).

    Google Scholar 

  12. Sedov, A.S. and Raeva, S.N., Wavelet analysis used to study firing activity of neurons of the human brain, Neiroinformatika, 2007, vol. 2, no. 1, p. 77.

    Google Scholar 

  13. Anderson, M.E. and Turner, R.S., Activity of neurons in cerebellar-receiving and pallidal-receiving areas of the thalamus of the behaving monkey, J. Neurophysiol., 1991, vol. 66, p. 879.

    CAS  PubMed  Google Scholar 

  14. Kha, H.T., Finkelstein, D.I., Tomas, D., et al., Projections from the substantia nigra pars reticulata to the motor thalamus of the rat: Single axon reconstructions and immunohistochemical study, J. Comp. Neurol., 2001, vol. 440, p. 20.

    Article  CAS  PubMed  Google Scholar 

  15. Vitek, J.L., Ashe, J., DeLong, M.R., and Kaneoke, Y., Microstimulation of primate motor thalamus: Somatotopic organization and differential distribution of evoked motor responses among subnuclei, J. Neurophysiol., 1996, vol. 75, p. 2486.

    CAS  PubMed  Google Scholar 

  16. LeDoux, M.S. and Brady, K.A., Secondary cervical dystonia associated with structural lesions of the central nervous system, Mov. Disord., 2003, vol. 18, p. 60.

    Article  PubMed  Google Scholar 

  17. Munchau, A. and Bronstein, A.M., Role of the vestibular system in the pathophysiology of spasmodic torticollis, J. Neurol. Neurosurg. Psychiatry, 2001, vol. 71, p. 285.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Slézia, A., Hangya, B., Ulbert, I., and Acsády, L., Phase advancement and nucleus-specific timing of thalamocortical activity during slow cortical oscillation, J. Neurosci., 2011, vol. 31, p. 607.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Raeva, S.N., Lukashev, A.O., Kadin, A.L., et al., Time course of neuronal interactions in the thalamic reticulate nucleus of the human brain at speech stimuli varying in signal importance, Neirofiziologiya, 1990, vol. 22, p. 451.

    CAS  Google Scholar 

  20. Raeva, S.N., Role of the parafascicular complex (CMPf) of the human thalamus in the neuronal mechanisms of voluntary attention, Ros. Fiziol. Zh. im. I.M. Sechenova, 2005, vol. 91, p. 225.

    CAS  Google Scholar 

  21. Sedov, A.S., Medvednik, R.S., and Raeva, S.N., Neuronal mechanisms of voluntary and involuntary movements in the thalamic parafascicular complex (CM-Pf) of spasmodic torticollis patients, Ros. Fiziol. Zh. im. I.M. Sechenova, 2010, vol. 95, no. 5, p. 498.

    Google Scholar 

  22. Livanov, M.N., Spatial Organization of the Brain (Nauka, Moscow, 1972).

    Google Scholar 

  23. Contreras, D. and Steriade, M., Synchronization of low-frequency rhythms in corticothalamic networks, Neuroscience, 1997, vol. 76, p. 11.

    Article  CAS  PubMed  Google Scholar 

  24. Tang, J.K., Mahant, N., Cunic, D., et al., Changes in cortical and pallidal oscillatory activity during the execution of a sensory trick in patients with cervical dystonia, Exp. Neurol., 2007, vol. 204, p. 845.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Sedov.

Additional information

Original Russian Text © A.S. Sedov, S.N. Raeva, V.B. Pavlenko, 2014, published in Fiziologiya Cheloveka, 2014, Vol. 40, No. 3, pp. 28–35.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sedov, A.S., Raeva, S.N. & Pavlenko, V.B. Neuronal mechanisms of motor signal transmission in the thalamic ventrooral nucleus in spasmodic torticollis patients. Hum Physiol 40, 258–264 (2014). https://doi.org/10.1134/S0362119714030153

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119714030153

Keywords

Navigation