Skip to main content
Log in

The next detectors for gravitational wave astronomy

  • Invited Review
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

This paper focuses on the next detectors for gravitational wave astronomy which will be required after the current ground based detectors have completed their initial observations, and probably achieved the first direct detection of gravitational waves. The next detectors will need to have greater sensitivity, while also enabling the world array of detectors to have improved angular resolution to allow localisation of signal sources. Sect. 1 of this paper begins by reviewing proposals for the next ground based detectors, and presents an analysis of the sensitivity of an 8 km armlength detector, which is proposed as a safe and cost-effective means to attain a 4-fold improvement in sensitivity. The scientific benefits of creating a pair of such detectors in China and Australia is emphasised. Sect. 2 of this paper discusses the high performance suspension systems for test masses that will be an essential component for future detectors, while sect. 3 discusses solutions to the problem of Newtonian noise which arise from fluctuations in gravity gradient forces acting on test masses. Such gravitational perturbations cannot be shielded, and set limits to low frequency sensitivity unless measured and suppressed. Sects. 4 and 5 address critical operational technologies that will be ongoing issues in future detectors. Sect. 4 addresses the design of thermal compensation systems needed in all high optical power interferometers operating at room temperature. Parametric instability control is addressed in sect. 5. Only recently proven to occur in Advanced LIGO, parametric instability phenomenon brings both risks and opportunities for future detectors. The path to future enhancements of detectors will come from quantum measurement technologies. Sect. 6 focuses on the use of optomechanical devices for obtaining enhanced sensitivity, while sect. 7 reviews a range of quantum measurement options.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blair D, Howell, L Ju, et al. Advanced Gravitational Wave Detectors. Cambridge: Cambridge University Press, 2012

    Book  Google Scholar 

  2. Punturo M, Abernathy M, Acernese F, et al. The Einstein Telescope: A third-generation gravitational wave observatory. Class Quantum Grav, 2010, 27(19): 194002

    Article  ADS  Google Scholar 

  3. Zhao C, Ju L, Degallaix J, et al. Parametric instabilities and their control in advanced interferometer gravitational-wave detectors. Phys Rev Lett, 2005, 94(12): 121102

    Article  ADS  Google Scholar 

  4. Miao H M, Yang H, Adhikari R X, et al. Quantum limits of interferometer topologies for gravitational radiation detection. Class Quantum Grav, 2014, 31(16): 165010

    Article  ADS  Google Scholar 

  5. LuckH,Affeldt C, Degallaix J, et al. The upgrade of GEO 600. J Phys-Conf Ser, 2010, 228(1): 012012

  6. Dooley K L, Abbott B P, Abbott R, et al. (LIGO Scientiffic Collaboration). Status of GEO 600, http://arxiv.org/pdf/1411.6588.pdf

  7. Grote H, Danzmann K, Dooley K L, et al. First long-term application of squeezed states of light in a gravitational-wave observatory. Phys Rev Lett, 2013, 110(18): 181101

    Article  ADS  Google Scholar 

  8. Aasi J, Abbott B P, Abbott R, et al. Advanced LIGO. Class Quantum Grav, 2015, 32(7): 074001

    Article  ADS  Google Scholar 

  9. Acernese F, Alshourbagy M, Antonucci F, et al. Advanced Virgo baseline design. VIR-0027A-09 2009, https://tds.ego-gw.it/ql/?c= 6589

  10. Callen H B, Welton T A. Irreversibility and generalized noise. Phys Rev, 1951, 83(1): 34–40

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Harry G M, Abernathy M R, Becerratoledo A E, et al. Titania-doped tantala/silica coatings for gravitational-wave detection. Class Quantum Grav, 2007, 24(2): 405–415

    Article  ADS  Google Scholar 

  12. Harry G M, Bodiya T P, DeSalvo R. Optical Coatings and Thermal Noise in Precision Measurement. Cambridge: Cambridge University Press, 2012

    Google Scholar 

  13. Beccaria M, Bernardini M, Braccini S, et al. Relevance of Newtonian seismic noise for the VIRGO interferometer sensitivity. Class Quantum Grav, 1998, 15(11): 3339–3362

    ADS  Google Scholar 

  14. Driggers J, Evans M, Pepper K, et al. Active noise cancellation in a suspended interferometer. Rev Sci Instrum, 2012, 83: 024501

    Article  ADS  Google Scholar 

  15. Buonanno A, Chen Y, Mavalvala N. Quantum noise in laserinterferometer gravitational-wave detectors with a heterodyne readout scheme. Phys Rev D, 2003, 67(12): 122005

    Article  ADS  Google Scholar 

  16. Beker M, Cella G, DeSalvo R, et al. Improving the sensitivity of future GW observatories in the 1 Hz band: Newtonian and seismic noise. Gen Rel Grav, 2011, 43(2): 623–656

    Article  ADS  Google Scholar 

  17. Matichard F, Lantz B, Mittleman R, et al. Seismic isolation of advanced LIGO gravitational waves detectors: Review of strategy, instrumentation and performance. Class Quantum Grav, 2015, 32: 185003

    Article  ADS  Google Scholar 

  18. Aston S, Barton M A, Bell A S, et al. Update on quadruple suspension design for advanced LIGO. Class Quantum Grav, 2012, 29(23): 235004

    Article  ADS  Google Scholar 

  19. Gonzalez G. Suspensions thermal noise in the LIGO gravitational wave detector. Class Quantum Grav, 17(21): 4409-4435

  20. Penn S D, Ageev A, Busby D, et al. Frequency and surface dependence of the mechanical loss in fused silica. Phys Lett A, 2006, 352(1-2): 3–6

    Google Scholar 

  21. Heptonstall A, Barton M, Cantley C, et al. Investigation of mechanical dissipation in CO2 laser-drawn fused silica fibres and welds. Class Quantum Grav, 2010, 27: 035013

    Article  ADS  Google Scholar 

  22. Zener C. Elasticity and Anelasticity of Metals. Chicago: U. Chicago Press, 1948

    Google Scholar 

  23. Cagnoli G, Willems P. Effects of nonlinear thermoelastic damping in highly stressed fibres. Phys Rev B, 2002, 65: 174111

    Article  ADS  Google Scholar 

  24. Bell C, Reid S, Faller J, et al. Experimental results for nulling the effective thermal expansion coefficient of fused silica fibres under a static stress. Class Quantum Grav, 2014, 31: 065010

    Article  ADS  Google Scholar 

  25. Cumming A V, Heptonstall A, Kumar R, et al. Finite element modelling of the mechanical loss of silica suspension fibres for advanced gravitational wave detectors. Class Quantum Grav, 2009, 26(21): 215012

    Article  ADS  Google Scholar 

  26. Cumming A V, Bell A S, Barsotti L, et al. Design and development of the advanced LIGO monolithic fused silica suspension. Class Quantum Grav, 2012, 29(3): 035003

    Article  ADS  Google Scholar 

  27. van Veggel A M, Killow C J. Hydroxide catalysis bonding for astronomical instruments. Adv Opt Technol, 2014, 3(3): 293–307

    ADS  Google Scholar 

  28. Heptonstall A, Barton M A, Bell A, et al. Invited Article: CO2 laser production of fused silica fibers for use in interferometric gravitational wave detector mirror suspensions. Rev Sci Instum, 2011, 82: 011301

    Article  ADS  Google Scholar 

  29. Tokmakov K V, Cumming A, Hough J, et al. A study of the fracture mechanisms in pristine silica fibres utilising high speed imaging techniques. J Non-Crystal Solids, 2012, 358(14): 1699–1709

    Article  ADS  Google Scholar 

  30. Cumming A, Jones R, Barton M, et al. Apparatus for dimensional characterization of fused silica fibers for the suspensions of advanced gravitational wave detectors. Rev Sci Instrum, 2011, 82: 044502

    Article  ADS  Google Scholar 

  31. Hammond G D, Cumming A V, Hough J, et al. Reducing the suspension thermal noise of advanced gravitational wave detectors. Class Quantum Grav, 2012, 29(12): 124009

    Article  ADS  Google Scholar 

  32. Heptonstall A, Barton M A, Bell A S, et al. Enhanced characteristics of fused silica fibers using laser polishing. Class Quantum Grav, 2014, 31(10): 105006

    Article  ADS  Google Scholar 

  33. Wagoner R V, Paik H J. Multi mode detection of gravitational waves by a sphere. In: Proceedings of the Accademia Nazionale dei Lincei International Symposium on Experimental Gravitation, Pavia, Italy, 1976. 257–265

  34. Johnson W W, Merkowitz S M. Truncated icosahedral gravitationalwave antenna. Phys Rev Lett, 1993, 70(16): 2367–2370

    Article  ADS  Google Scholar 

  35. Paik H J, Griggs C E, Moody M V, et al. Low-frequency terrestrial tensor gravitational-wave detector. Paper in preparation

  36. Moody M V, Paik M V, Canavan E R. Three-axis superconducting gravity gradiometer for sensitive gravity experiments. Rev Sci Instrum, 2002, 73(11): 3957–3974

    Article  ADS  Google Scholar 

  37. Harms J, Slagmolen B J J, Adhikari R X, et al. Low-frequency terrestrial gravitational-wave detectors. Phys Rev D, 2013, 88(12): 122003

    Article  ADS  Google Scholar 

  38. Harms J, Paik H J. Newtonian-noise cancellation in full-tensor gravitational-wave detectors. Phys Rev D, 2015, 92(2): 022001

    Article  ADS  Google Scholar 

  39. Somiya K. Detector configuration of KAGRA-the Japanese cryogenic gravitational-wave detector. Class Quantum Grav, 2012, 29(12): 124007

    Article  ADS  Google Scholar 

  40. ET Science Team. Einstein Gravitational Wave Telescope conceptual design Study. Available from European Gravitational Observatory, http://www.et-gw.eu/. ET-0106C-10, 2011

    Google Scholar 

  41. Beker MG, Cella G, DeSalvo R, et al. Improving the sensitivity of future GW observatories in the 1–10 Hz band: Newtonian and seismic noise. Gen Rel Grav, 2011, 43(2): 623–656

    Article  ADS  Google Scholar 

  42. Acernese F, Alshourbagy M, Amico P, et al. VIRGO: A large interferometer for gravitational wave detection started its first scientific run. J Phys-Conf Ser, 2008, 120: 032007

  43. Abbott B P, Abbott R, Adhikari R, et al. LIGO: The laser interferometer gravitational-wave observatory. Rep Prog Phys, 2009, 72(7): 076901

    Article  ADS  Google Scholar 

  44. Abbott B P, Abbott R, Acernese F, et al. An upper limit on the stochastic gravitational-wave background of cosmological origin. Nature, 2009, 460(7258): 990–994

    Article  ADS  Google Scholar 

  45. Abadie J, Abbott B P, Abbott R, et al. Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1. Phys Rev D, 2010, 82(10): 102001

    Article  ADS  Google Scholar 

  46. Abadie J, Abbott B P, Abbott R, et al. All-sky search for gravitationalwave bursts in the first joint LIGO-GEO-Virgo run. Phys Rev D, 2010, 81(10): 102001

    Article  ADS  Google Scholar 

  47. Abadie J, Abbott B P, Abbott R, et al. Beating the spin-down limit on gravitational wave emission from the vela pulsar. Astrophys J, 2011, 737(2): 93

    Article  ADS  Google Scholar 

  48. Degallaix J, Accadia T, Acernese F, et al. Advanced Virgo. In: Proceedings of the 46th Rencontres de Moriond. Vietnam: The Gioi Publishers, 2011

  49. Harry G M. (LIGO Sci Collaboration). Advanced LIGO: The next generation of gravitational wave detectors. Class Quantum Grav, 2010, 27(8): 084006

    MathSciNet  Google Scholar 

  50. Abadie J, Abbott B P, Abbott R, et al. Predictions for the rates of compact binary coalescences observable by ground-based gravitationalwave detectors. Class Quantum Grav, 2010, 27(17): 173001

    Article  ADS  Google Scholar 

  51. Accadia T, Fafone V, Rocchi A, et al. A thermal compensation system for the gravitational wave detector Virgo. In: Proceedings of the 12th Marcell Grossmann Meeting. Singapore: World Scientific, 2011

  52. Lawrence R C. Active Wavefront Correction in Laser Interferometric Gravitational Wave Detectors. Dissertation for the Doctorial Degree. Boston: Massachusettes Institute of Technology, 2003. LIGOP030001- 00-R

  53. Hello P. Compensation for thermal effects in mirrors of gravitational wave interferometers. Eur Phys J D, 2001, 15(3): 373–383

    Article  ADS  Google Scholar 

  54. Grote H. the GEO 600 status. Class Quantum Grav, 2010, 27(8): 084003

    Article  ADS  MathSciNet  Google Scholar 

  55. Luck H, Freise A, Gossler S, et al. Thermal correction of the radii of curvature of mirrors for GEO 600. Class Quantum Grav, 2004, 21(5): S985–S989

    Google Scholar 

  56. Rocchi A, Coccia E, Fafone, V, et al. Thermal effects and their compensation in the interferometric gravitational wave detector Advanced Virgo. In: Proceedings of the 46th Rencontres de Moriond. Vietnam: The Gioi Publishers, 2011

    Google Scholar 

  57. Rocchi A, Coccia E, Fafone V, et al. Thermal effects and their compensation in Advanced Virgo. J Phys-Conf Ser, 2012, 363: 012016

    Article  ADS  Google Scholar 

  58. Fafone V, Rocchi A. TCS noise: General concepts and application to the Virgo/Virgo+ case. VIR-0615B-09, 2009

    Google Scholar 

  59. Goda K, Ottaway D, Connelly B, et al. Frequency-resolving spatiotemporal wave-front sensor. Opt Lett, 2004, 29: 1452

    Article  ADS  Google Scholar 

  60. Hartmann J. Bemerkungen uber den bau und die justirung von spektrographen. Zt Instrum, 1900, 20: 47

    Google Scholar 

  61. Fan Y, Zhao C, Degallaix J, et al. Feedback control of thermal lensing in a high optical power cavity. Rev Sci Instrum, 2008, 79: 104501

    Article  ADS  Google Scholar 

  62. Brooks A F, Kelly T L, Veitch P J, et al. Ultra-sensitive wavefront measurement using a Hartmann sensor. Opt Express, 2007, 15(16): 10370–10375

    Article  ADS  Google Scholar 

  63. Adhikari R, Arai K, Ballmer S, et al. Report of the 3rd Generation LIGO Detector Strawman Workshop, 2012, LIGO-T1200031-v3

  64. Punturo M, Abernathy M, Acernese, F, et al. The third generation of gravitational wave observatories and their science reach. Class Quantum Grav, 2010, 27: 084007

    Article  ADS  Google Scholar 

  65. Hild S, Abernathy M, Acernese F, et al. Sensitivity studies for thirdgeneration gravitational wave observatories. Class Quantum Grav, 2011, 28: 094013

    Article  ADS  Google Scholar 

  66. Sorazu B, Fulda P J, Barr BW, et al. Experimental test of higher-order Laguerre-Gauss modes in the 10 m Glasgow prototype interferometer. Class Quantum Grav, 2013, 30(3): 035004

    Article  ADS  Google Scholar 

  67. Hong T, Miller J, Yamamoto H, et al. Effects of mirror aberrations on Laguerre-Gaussian beams in interferometric gravitational-wave detectors. Phys Rev D, 2011, 84(10): 102001

    Article  ADS  Google Scholar 

  68. Bond C, Fulda P, Carbone L, et al. Higher order Laguerre-Gauss mode degeneracy in realistic, high finesse cavities. Phys Rev D, 2011, 84(10): 102002

    Article  ADS  Google Scholar 

  69. Day R, Vajente G, Kasprzack M, et al. Reduction of higher order mode generation in large scale gravitational wave interferometers by central heating residual aberration correction. Phys Rev D, 2013, 87(8): 082003

    Article  ADS  Google Scholar 

  70. Rocchi A. Thermal effects and other wave-front aberrations in recycling cavities. In: Advanced interferometers and the searches for gravitational waves. Switzerland: Springer International Publishing, 2014

    Google Scholar 

  71. Braginsky V B, Strigin S E, Vyatchanin S P, et al. Parametric oscillatory instability in Fabry-Perot interferometer. Phys Lett A, 2001, 287(5-6): 331–338

    Article  ADS  Google Scholar 

  72. Evans M, Barsotti L, Fritschel P, et al. A general approach to optome chanical parametric instabilities. Phys Lett A, 2010, 374(4): 665–671

    Article  ADS  MATH  Google Scholar 

  73. Zhao C, Ju L, Degallaix J, et al. Parametric instabilities and their control in advanced interferometer GW detectors. Phys Rev Lett, 2005, 94(12): 121102

    Article  ADS  Google Scholar 

  74. Zhao C, Ju L, Fang Q, et al. Parametric instability in long optical cavities and suppression by dynamic transverse mode frequency modulation. Phys Rev D, 2015, 91(9): 092001

    Article  ADS  Google Scholar 

  75. Evans M, Gras S, Fritschel P, et al. Observation of parametric instability in advanced LIGO. Phys Rev Lett, 2015, 114(16): 161102

    Article  ADS  Google Scholar 

  76. Gras S, Blair D G, Zhao C, et al. Suppression of parametric instabilities in future gravitational wave detectors using damping rings. Class Quantum Grav, 2009, 26(13): 135011

    Article  ADS  Google Scholar 

  77. Evans M, Jonathan S G, Dennis C, et al. Mechanical mode damping for parametric instability control. LIGO DCC http://www.ligo.caltech.edu, G080541

  78. Gras S, Fritschel P, Barsotti L, et al. Resonant dampers for parametric instabilities in gravitational wave detectors. arxiv:1502.06056

  79. Gras S, Evans M, Fritschel P, et al. Acoustic Mode Damper (AMD) passive control of parametric instability. LIGO DCC 2010, https://dcc.ligo.org, G1001023

    Google Scholar 

  80. Fan Y, Merrill L, Zhao C N, et al. Testing the suppression of optoacoustic parametric interactions using optical feedback control. Class Quantum Grav, 2010, 27(8): 084028

    Article  ADS  Google Scholar 

  81. Miller J, Evans M, Barsotti L, et al. Damping parametric instabilities in future gravitational wave detectors by means of electrostatic actuators. Phys Lett A, 2011, 375(3): 788–794

    Article  ADS  Google Scholar 

  82. Degallaix J, Zhao C, Ju L, et al. Thermal tuning of optical cavities for parametric instability control. J Opt Soc Am B-Opt Phys, 2007, 24(6): 1336–1343

  83. Susmithan S, Zhao C, Qi F, et al. Thermal tuning the optical cavity for 3 mode interaction studies using a CO2 laser. J Phys-Conf Ser, 2012, 363: 012018

  84. Zhao C. Gingin high optical power test facility. J Phys-Conf Ser, 2006, 32: 368–373

    Article  ADS  Google Scholar 

  85. Gras S, Zhao C, Blair D G, et al. Parametric instabilities in advanced gravitational wave detectors. Class Quantum Grav, 2010, 27(20): 205019

    Article  ADS  MathSciNet  Google Scholar 

  86. Blair C, Susmithan S, Zhao C, et al. Radiation pressure excitation of test mass ultrasonic modes via three mode opto-acoustic interactions in a suspended Fabry-Perot cavity. Phys Lett A, 2013, 377(31-33): 1970–1973

    Article  ADS  Google Scholar 

  87. Ju L, Zhao C, Blair D G, et al. Three mode interactions as a precision monitoring tool for advanced laser interferometers. Class Quantum Grav, 2014, 31(18): 185003

    Article  ADS  Google Scholar 

  88. Chree C. Longitudinal vibrations of a circular bar. Quart J Pure Appl Math, 1886, 21(83/84): 287

    MATH  Google Scholar 

  89. Spinner S, Cleek G. Temperature dependence of Young’s modulus of vitreous germania and silica. J Appl Phys, 1960, 31(8): 1407–1410

    Article  ADS  Google Scholar 

  90. Doolin C, Kim P H, Hauer B D, et al. Multidimensional optomechanical cantilevers for high-frequency force sensing. New J Phys, 2014, 16: 035001

    Article  Google Scholar 

  91. Hauer B D, Doolin C, Beach K S D, et al. A general procedure for thermomechanical calibration of nano/micro-mechanical resonators. Anals Phys, 2013, 339: 181–207

    ADS  Google Scholar 

  92. Martinov D, Tsukada L. Loss Measurement: X Arm. LIGO Technical Report. https://alog.ligo-la.caltech.edu/aLOG/index.php?callRep =13646

  93. Tsukada L. Loss Measurement: X Arm. LIGO Technical Report. https://alog.ligo-la.caltech.edu/aLOG/index. php?callRep=14057

  94. Zhao C, Degallaix J, Ju L, et al. Compensation of strong thermal lensing in high-optical-power cavities. Phys Rev Lett, 2006, 96(23): 231101

    Article  ADS  Google Scholar 

  95. Hello P, Vinet J. Numerical model of transient thermal effects in high power optical resonators. J Phys I, 1993, 3(3): 717–732

  96. Brooks A. Results from thermal compensation system testing in the one arm test. LIGO DCC https://dcc.ligo.org, T1200465, 2012

  97. Wang H, Blair C, Kasprzach M, et al. Coating Absorption Estimation for aLIGO ETM. LIGO technical Report. https://dcc.ligo.org/LIGOT1500469

  98. Strigin S E, Blair D G, Gras S, et al. Numerical calculations of elastic modes frequencies for parametric oscillatory instability in advanced LIGO interferometer. Phys Lett A, 2008, 372: 5727–5731

    Article  ADS  MATH  Google Scholar 

  99. Caves C M. Quantum-mechanical noise in an interferometer. Phys Rev D, 1981, 23: 1963–1708

    Article  Google Scholar 

  100. Meers B J. Recycling in laser-interferometric gravitational-wave detectors. Phys Rev D, 1988, 38: 2317–2326

    Article  ADS  Google Scholar 

  101. Buonanno A, Chen Y. Signal recycled laser-interferometer gravitational- wave detectors as optical springs. Phys Rev D, 2002, 65: 042001

    Article  ADS  Google Scholar 

  102. Aasi J, Abadie J, Abbott B P, et al. Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nat Photonic, 2013, 7: 613–619

    Article  ADS  Google Scholar 

  103. Bromm V, Larson R B. A gravitational wave observatory operating beyond the quantum shot-noise limit. Nat Phys, 2011, 7: 962–965

    Article  Google Scholar 

  104. Kimble H J, Levin Y, Matsko A B, et al, Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics. Phys Rev D, 2001, 65: 022002

    Article  ADS  Google Scholar 

  105. Chelkowski S, Vahlbruch H, Hage B, et al. Experimental characterization of frequency-dependent squeezed light. Phys Rev A, 2005, 71: 013806

    Article  ADS  Google Scholar 

  106. Oelker E, Isogai T, Miller J, et al. Audio-band frequency-dependent squeezing. arXiv:1508.04700

  107. Wicht A, Danzmanna K, Fleischhauerc M, et al. White-light cavities, atomic phase coherence, and gravitational wave detectors. Opt Commun, 1997, 134: 431–439

    Article  ADS  Google Scholar 

  108. Mikhailov E E, Goda K, Corbitt T. Frequency-dependent squeezeamplitude attenuation and squeeze-angle rotation by electromagnetically induced transparency for gravitational-wave interferometers. Phys Rev A, 2006, 73: 053810

    Article  ADS  Google Scholar 

  109. Ma Y, Miao H, Zhao C, et al. Quantum noise of a white-light cavity using a double-pumped gain medium. Phys Rev A, 2015, 92: 023807

    Article  ADS  Google Scholar 

  110. Evans M, Barsotti L, Kwee P, et al. Realistic filter cavities for advanced gravitational wave detectors. Phys Rev D, 2013, 88: 022002

    Article  ADS  Google Scholar 

  111. Isogai T, Miller J, Kwee P, et al. Loss in long-storage-time optical cavities. Opt Express, 2013, 21: 30114–30125

    Article  ADS  Google Scholar 

  112. Weis S, Rivière R, Delèglise S, et al. Optomechanically induced transparency. Science, 2010, 330: 1520–1523

    Article  ADS  Google Scholar 

  113. Teufel J D, Li D, Allman M S, et al. Circuit cavity electromechanics in the strong-coupling regime. Nature, 2011, 471: 204–208

    Article  ADS  Google Scholar 

  114. Safavi-Naeini A H, Mayer Alegre T P, Chan J, et al. Electromagnetically induced transparency and slow light with optomechanics. Nature, 2011, 472: 69–73

    Article  ADS  Google Scholar 

  115. Ma Y, Danilishin S L, Zhao C, et al. Narrowing the filter-cavity bandwidth in gravitational-wave detectors via optomechanical interaction. Pys Rev Lett, 2014, 113: 151102

    Article  ADS  Google Scholar 

  116. Qin J, Zhao C, Ma Y, et al. Classical demonstration of frequencydependent noise ellipse rotation using optomechanically induced transparency. Phys Rev A, 2014, 89: 041802(R)

  117. Salit M, Shahriar M S. Enhancement of sensitivity-bandwidth product of interferometric GW detectors using white light cavities. J Opt, 2010, 12: 104014

  118. Pati G S, Salit M, Salit K, et al. Demonstration of a tunablebandwidth white-light interferometer using anomalous dispersion in atomic vapor. Phys Rev Lett, 2007, 99: 133601

    Article  ADS  Google Scholar 

  119. Miao H, Ma Y, Zhao C, et al. Enhancing the bandwidth of gravitational-wave detectors with unstable optomechanical filters. arXiv:1506.00117

  120. Qin J, Zhao C, Ma Y, et al. Linear negative dispersion with a gain doublet via optomechanical interactions. Opt Lett, 2015, 40: 2337–2340

    Article  ADS  Google Scholar 

  121. Qin J, Zhao C, Ma Y, et al. Stable optomechanical white light cavity for improving the sensitivity of detuned signal recycling interometers. In preparation

  122. Rempe G, Thompson R J, Kimble H J, et al. Measurement of ultralow losses in an optical interferometer. Opt Lett, 1992 17: 363–365

  123. Corbitt T, Wipf C, Bodiya T, et al. Optical dilution and feedback cooling of a gram-scale oscillator to 6.9 mK. Phys Rev Lett, 2007, 99: 160801

    Article  ADS  Google Scholar 

  124. Chang D E, Ni K-K, Painter O, et al. Ultrahigh-Q mechanical oscillators through optical trapping. New J Phys, 2012, 14: 045002

    Article  Google Scholar 

  125. Ni K K, Norte R, Wilson D J, et al. Enhancement of mechanical Q factors by optical trapping. Phys Rev Lett, 2012, 108: 214302

    Article  ADS  Google Scholar 

  126. Korth W Z, Miao H, Corbitt T, et al. Suppression of quantumradiation- pressure noise in an optical spring. Phys Rev A, 2 13, 88: 033805

  127. Thompson J D, Zwickl B M, Jayich A M, et al. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature, 2008, 452: 72–76

    Article  ADS  Google Scholar 

  128. Page M, Zhao C, Ma Y, et al. Noise-free optical dilution of a cat-flap mirror. In preparation

  129. Guccione G, Hosseini M, Adlong S, et al. Scattering-free optical levitation of a cavity mirror. Phys Rev Lett, 2013, 111: 183001

    Article  ADS  Google Scholar 

  130. Miller J, Barsotti L, Vitale S, et al. Prospects for doubling the range of advanced LIGO. Phys Rev D, 2015, 91: 062005

    Article  ADS  Google Scholar 

  131. Danilishin S L, Khalili F Y. Quantum Measurement Theory in Gravitational-Wave Detectors. Liv Rev Relat, 2012, 15: 5

    Google Scholar 

  132. Purdue P, Chen Y. Practical speed meter designs for quantum nondemolition gravitational-wave interferometers. Phys Rev D, 2002, 66: 122004

    Article  ADS  Google Scholar 

  133. Harms J, Chen Y, Chelkowski S, et al. Squeezed-input, opticalspring, signal-recycled gravitational-wave detectors. Phys Rev D, 2003, 68: 42001

    Article  ADS  Google Scholar 

  134. Khalili F Y. Optimal configurations of filter cavity in future gravitational-wave detectors. Phys Rev D, 2010, 81: 122002

    Article  ADS  Google Scholar 

  135. Kwee P, Miller J, Isogai T, et al. Decoherence and degradation of squeezed states in quantum filter cavities. Phys Rev D, 2014, 90: 62006

    Article  ADS  Google Scholar 

  136. Beyersdorf P T, Fejer M M, Byer R L. Polarization Sagnac interferometer with postmodulation for gravitational-wave detection. Opt Lett, 1999, 24: 1112

    Article  ADS  Google Scholar 

  137. Chen Y. Sagnac interferometer as a speed-meter-type, quantumnondemolition gravitational-wave detector. Phys Rev D, 2003, 67: 122004

    Article  ADS  Google Scholar 

  138. Danilishin S L. Sensitivity limitations in optical speed meter topology of gravitational-wave antennas. Phys Rev D, 2004, 69: 102003

    Article  ADS  Google Scholar 

  139. Wade A R, McKenzie K, Chen Y, et al. Polarization speed meter for gravitational-wave detection. Phys Rev D, 2012, 86: 62001

    Article  ADS  Google Scholar 

  140. Wang M, Miao H, Freise A, et al. Sensitivity of intracavity filtering schemes for detecting gravitational waves. Phys Rev D, 2014, 89: 062009

    Article  ADS  Google Scholar 

  141. Buonanno A, Chen Y. Scaling law in signal recycled laserinterferometer gravitational-wave detectors. Phys Rev D, 2003, 67: 62002

    Article  ADS  Google Scholar 

  142. Thüring A, Schnabel R, Lück H, et al. Detuned Twin-signal-recycling for ultrahigh-precision interferometers. Opt Lett, 2007, 32: 985

    Article  ADS  Google Scholar 

  143. Gräf C, Thüring A, Vahlbruch H, et al. Length sensing and control of a Michelson interferometer with power recycling and twin signal recycling cavities. Opt Express, 2013, 21: 5287

    Article  ADS  Google Scholar 

  144. McClelland D E. An overview of recycling in laser interferometric gravitation wave detectors. Aust J Phys, 1995, 48: 953

    Article  ADS  Google Scholar 

  145. Rehbein H, Müller-Ebhardt H, Somiya K, et al. Double optical spring enhancement for gravitational-wave detectors. Phys Rev D, 2008, 78: 62003

    Article  ADS  Google Scholar 

  146. Rehbein H, Müller-Ebhardt H, Somiya K, et al. Local readout enhancement for detuned signal-recycling interferometers. Phys Rev D, 2007, 76: 62002

    Article  ADS  Google Scholar 

  147. Korobko M, Voronchev N, Miao H, et al. Paired carriers as a way to reduce quantum noise of multicarrier gravitational-wave detectors. Phys Rev D, 2015, 91: 42004

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David Blair or ChunNong Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blair, D., Ju, L., Zhao, C. et al. The next detectors for gravitational wave astronomy. Sci. China Phys. Mech. Astron. 58, 120405 (2015). https://doi.org/10.1007/s11433-015-5747-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-015-5747-7

Keywords

Navigation