Skip to main content
Log in

Chronometric measurement of orthometric height differences by means of atomic clocks

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

We report on the experimental results of testing a new physical method of determination of the gravitational potential differences and orthometric heights by measuring the relativistic effect of gravitational redshift of frequency by means of atomic clocks. The experiment was performed in the Altai Mountains between two geodetic stations, Shebalino and Sieminski Pass, separated by about 850 meters in altitude. The measured mean value of the frequency shift caused by the change in the gravitational potential between the two stations is (δf/f 0)grav = 7.980 × 10−14, with the dispersion σ f = 7.27 × 10−15 referred to the time interval of the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Landau and E. M. Lifshitz, Theory of Fields (Nauka, Moscow, 1988).

    MATH  Google Scholar 

  2. S. Kopeikin, M. Efroimsky, and G. Kaplan, Relativistic CelestialMechanics of the Solar System (Wiley, Berlin, 2011).

    Book  MATH  Google Scholar 

  3. Y. Ovchinnikov and G. Marra, “Accurate rubidium atomic fountain frequency standard,” Metrologia 48, 87–100 (2011).

    Article  ADS  Google Scholar 

  4. B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10-18 level,” Nature 506, 71–75 (2014).

    Article  ADS  Google Scholar 

  5. G. Petit, P. Wolf, and P. Delva, “Atomic time, clocks, and clock comparisons in relativistic spacetime: a review,” in Frontiers in Relativistic Celestial Mechanics. Vol. 2. Application and Experiments. Ed. by S. M. Kopeikin (De Gruyter, Berlin, 2014), pp. 249–283.

    Google Scholar 

  6. E. Mai, Time, Atomic Clocks, and Relativistic Geodesy’ (Deutsche Geodätische Kommission, München, 2013); http://www.dgk.badw.de/fileadmin/docs/a-124.pdf. Cited February 21, 2016.

    MATH  Google Scholar 

  7. V. F. Fateev and V. P. Sysoev, “Relativistic effects in mobile clocks,” Meas. Techniques 8, 31–35 (2014).

    Google Scholar 

  8. P. Gill, H. Margolis, A. Curtis, H. Klein, S. Lea, S. Webster, and P. Whibberley, Optical Atomic Clock for Space, (National Physical Laboratory of USA, Technical Supporting Document, 2008); http://www.npl.co.uk/upload/pdf/atomic_clocks_space.pdf. Cited February 21, 2016.

    Google Scholar 

  9. N. Ashby, “Relativity in the Global Positioning System,” Living Rev. Relativity 6, 1 (2003); http://www.livingreviews.org/lrr-2003-1. Cited February 21, 2016.

    Article  ADS  MATH  Google Scholar 

  10. G. F. Tulinov, “Radiophysical method of measurement of the Earth’s gravitational potential: the state of the art and future prospects,” Heliophysical Research 6, 91–95 (2013); http://vestnik.geospace.ru/index.php?id=62. Cited February 21, 2016.

    Google Scholar 

  11. L. A. Lipatnikov, “Relativistic effects in the clocks of GNSS reseivers,” Proceedings of Siberian State Geodesic Academy 3, 45–52 (2011).

    Google Scholar 

  12. S. Turyshev, “Experimental tests of general relativity,” Annual Review of Nuclear and Particle Systems 58 (1), 207–248 (2008).

    Article  ADS  Google Scholar 

  13. C. M. Will, “The Confrontation between General Relativity and Experiment,” Living Rev. Relativity 9, 3 (2006); http://www.livingreviews.org/lrr-2006-3. Cited February 21, 2016.

    Article  ADS  MATH  Google Scholar 

  14. J. C. Hafele and R. E. Keating, “Around-the-world atomic clocks: predicted relativistic time gains,” Science 177 (4044), 166–168 (1972).

    Article  ADS  Google Scholar 

  15. J. C. Hafele and R. E. Keating, “Around-the-world atomic clocks: observed relativistic time gains,” Science 177 (4044), 168–170 (1972).

    Article  ADS  Google Scholar 

  16. S. Iijima, K. Fujiwara, H. Kobayashi, and T. Kato, “An experiment for the potential blue shift at the Norikura Corona Station,” Annals of the Tokyo Astronomical Observatory 17, 680–78 (1978).

    Google Scholar 

  17. L. Briatore and S. Leschiutta, “Evidence for the Earth gravitational shift by direct atomic-time-scale comparison,” Nuovo Cim. B 37 (2), 219–231 (1977)

    Article  ADS  Google Scholar 

  18. C. W. Chou, D.B. Hume, T. Rosenband, and D. J. Wineland, “Optical clocks and relativity,” Science 329 (5999), 1630–1633 (2010).

    Article  ADS  Google Scholar 

  19. C. Lisdat and P. O. Schmidt, “Transportable optical clocks for relativistic geodesy,” Leibniz Universität Hannover, Project SFB 1128, Research Area A03, 2016; http://www.geoq.uni-hannover.de/a03.html. Cited February 21, 2016.

    Google Scholar 

  20. V. M. Tissen and A. S. Tolstikov, “Mathematical models of KSCH instability,” in Proc. Int. Conf. “Important Problems of Electronic Engineering: IPEE–2004” (Novosibirsk State University, Novosibirsk, 2004), vol. 3, pp. 263–269.

    Google Scholar 

  21. J. Rutman, “Characterization of phase and frequency instabilities in precision frequency sources—Fifteen years of progress,” Proc. IEEE 66, 1048–1075 (1978).

    Article  ADS  Google Scholar 

  22. V. F. Eremeev and M. I. Yurkina, Theory of Heights in the Earth’s Gravitational Field (Nedra,Moscow, 1972)

    Google Scholar 

  23. F. V. Kushnir, Electro-radiomeasurements, Textbook for the Schools of Higher Learning (Energoatomizdat, Leningrad, 1983).

    Google Scholar 

  24. D. E. Wells, N. Beck, D. Delikaraoglou, A. Kleusberg, E. J. Krakiwsky, G. Lachapelle, R. B. Langley, M. Nakiboglu, K. P. Schwarz, J. M. Tranquilla, and P. Vanicek, Guide to GPS Positioning (Canadian GPS Associates: Fredericton, N.B., Canada, 1986); http://plan.geomatics.ucalgary.ca/papers/guide_to _gps_positioning_ebook.pdf. Cited February 21, 2016.

    Google Scholar 

  25. A. S. Tolstikov, “Algorithms of synchronization of spatially separated clocks by means of the signals of the satellite positioning systems,” Metrology 9, 25–35 (2009).

    Google Scholar 

  26. K. M. Antonovich and N. S. Kosarev, “On the divergence of the range and phase pseudo-distances,” in: Proceedings of IX-th International Scientifi Congress “InterExpo Geo-Siberia 2013” (Siberian State Geodesic Academy, Novosibirsk, 2013), vol. 3, pp. 60–66.

    Google Scholar 

  27. J. Boehm, A. Niell, P. Tregoning, and H. Schuh, “Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data,” Geophys. Res. Letters 33, L07304 (2006).

    Article  ADS  Google Scholar 

  28. V. F. Kanushin, A. P. Karpik, D. N. Goldobin, I. G. Ganagina, E. G. Gienko, and N. S. Kosarev, “Determination of the differences of the gravitational potential and heights in geodesy by means of gravimetric and satellitemeasurements,” in Proc. Siberian State University of Geosyststems and Technology (2015), vol. 3, pp. 53–69.

    Google Scholar 

  29. C. Förste, S. Bruinsma, O. Abrikosov, F. Flechtner, J.-C. Marty, J.-M. Lemoine, C. Dahle, H. Neumayer, F. Barthelmes, R. König, and R. Biancale, “EIGEN-6C4—The latest combined global gravity field model including GOCE data up to degree and order 1949 of GFZ Potsdam and GRGS Toulouse,” in EGU General Assembly Abstracts, 2014, No. 3707.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Kopeikin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopeikin, S.M., Kanushin, V.F., Karpik, A.P. et al. Chronometric measurement of orthometric height differences by means of atomic clocks. Gravit. Cosmol. 22, 234–244 (2016). https://doi.org/10.1134/S0202289316030099

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289316030099

Navigation