Skip to main content
Log in

Manifestations of dark energy in the solar system

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

We give more than 10 examples based on astronomical observations showing that dark energy acts not only on large scales but also on small scales. In particular, we present several independent arguments that the average Earth-Sun distance increases by about 5 m/yr. Such a large recession speed cannot be explained by the solar wind, tidal forces, plasma outbursts from the Sun, or by the decrease of the Solar mass due to nuclear reactions. We also discuss possible reasons for disagreement with other authors, who propose much smaller values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. S. Adkins and J. McDonnell, “Orbital precession due to central-force perturbations,” Phys. Rev. D 75, 082001 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  2. J.D. Anderson and M. M. Nieto, “Astrometric Solar-System anomalies,” in: Relativity in Fundamental Astronomy: Dynamics, Reference Frames, and Data Analysis, Proc. IAU Sympos. 261, 189–197 (2010).

    Google Scholar 

  3. H. Arakida, “Note on the perihelion/periastron advance due to cosmological constant,” Int. J. Theor. Phys. 52, 1408–1414 (2013).

    Article  MathSciNet  Google Scholar 

  4. B. Bertotti, P. Farinella, and D. Vokrouhlický, “Physics of the Solar System” (Kluwer, Dordrecht, 2003).

    Book  Google Scholar 

  5. L. Blanchet and J. Novak, “External field effect of modified Newtonian dynamics in the Solar system,” Mon. Not. Roy. Astron. Soc. 412, 2530–2542 (2011).

    Article  ADS  Google Scholar 

  6. M. Burša and K. Peč, Gravity Field and Dynamics of the Earth (Springer, Berlin, 1993).

    Google Scholar 

  7. M. Carrera and D. Giulini, “Influence of global cosmological expansion on local dynamics and kinematics,” Rev. Mod. Phys. 82, 169–208 (2010).

    Article  ADS  Google Scholar 

  8. F. I. Cooperstock, V. Faraoni, and D. N. Vollick, “The influence of the cosmological expansion on local systems,” Astrophys. J. 503, 61–66 (1998).

    Article  ADS  Google Scholar 

  9. C. M. Cox and B. F. Chao, “Detection of large-scale mass redistribution in the terrestrial system since 1998,” Science 297, 831–833 (2002).

    Article  ADS  Google Scholar 

  10. Yu. V. Dumin, “A new application of the Lunar laser retroreflectors: Searching for the “local” Hubble expansion,” Adv. Space Res. 31, 2461–2466 (2003).

    Article  ADS  Google Scholar 

  11. Yu. V. Dumin, “Testing the ‘dark-energy’-dominated cosmology via the Solar-Systemexperiments,” astroph/0507381.

  12. Yu. V. Dumin, “Testing the dark-energy-dominated cosmology by the Solar-System experiments,” Proc. of the 11thMarcel Grossmann Meeting on General Relativity, Ed. by H. Kleinert, R. T. Jantzen, and R. Ruffini (World Sci., Singapore, 1752–1754, 2008), ArXiv: 0808.1302.

    Google Scholar 

  13. Yu. V. Dumin, “Lambda-perturbations of Keplerian orbits,” ArXiv: 1206.0306.

  14. G. Feulner, “The faint young Sun problem,” Rev. Geophys. 50,RG2006, 1–29 (2012).

    Google Scholar 

  15. C. Goldblatt and K. J. Zahnle, “Faint young Sun paradox remains,” ArXiv: 1105.5425.

  16. R. S. Gomes, J. J. Matese, and J. J. Lissauer, “A distant planetary-mass solar companion may have produced distant detached objects,” Icarus 184, 589–601 (2006).

    Article  ADS  Google Scholar 

  17. W. K. Hartmann, Mars (Workman Publ., New York, 2003).

    Google Scholar 

  18. A. Hees, W. M. Folkner, R. A. Jacobson, and R. S. Park, “Constraints on MOND theory from radio tracking data of the Cassini spacecraft,” ArXiv: 1402.6950.

  19. A. Hees et al., “Tests of Gravitation at Solar System scales beyond the PPN formalism,” ArXiv: 1403.1365.

  20. A. Hees et al., “Radioscience simulations in general relativity and in alternative theories of gravity,” Class. Quantum Grav. 29, 235027 (2012).

    Article  ADS  Google Scholar 

  21. L. Iorio, “A note on the evidence of the gravitomagnetic field of Mars,” Class. Quantum Grav. 23, 5451–5454 (2006).

    Article  ADS  MATH  Google Scholar 

  22. L. Iorio, “Solar system planetary orbital motions and dark matter,” JCAP 5, 002 (2006).

    Article  ADS  Google Scholar 

  23. L. Iorio, “Can Solar System observations tell us something about the cosmological constant?,” Int. J. Mod. Phys. D 15, 473–475 (2006).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. L. Iorio, “Dynamical determination of the mass of the Kuiper belt from motions of the inner planets of the Solar system,” Mon. Not. Roy. Astron. Soc. 375, 1311–1314 (2007).

    Article  ADS  Google Scholar 

  25. L. Iorio, “Solar System motions and the cosmological constant: A new approach,” Adv. Astron., article id. 268647 (2008).

    Google Scholar 

  26. L. Iorio, “Classical and relativistic orbital motions around a mass-varying body,” SRX Physics, article id. 261249 (2010)

    Google Scholar 

  27. L. Iorio, “Orbital effects of Sun’s mass loss and the Earth’s fate,” Natur. Sci. 2, 329–337 (2010).

    Article  ADS  Google Scholar 

  28. L. Iorio, “On the Lense-Thirring test with the Mars Global Surveyor in the gravitational field of Mars,” Cent. Eur. J. Phys. 8, 509–513 (2010).

    Article  Google Scholar 

  29. L. Iorio, “The perihelion precession of Saturn, planet X/Nemesis and MOND,” Open Astron. J. 3, 1–6 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  30. L. Iorio, “An empirical explanation of the anomalous increases in the Astronomical unit and the lunar eccentricity”, Astron. J. 142, 68 (2011).

    Article  ADS  Google Scholar 

  31. L. Iorio, “On the anomalous secular increase of the eccentricity of the orbit of the Moon,” Mon. Not. R. Astron. Soc. 415, 1266–1275 (2011).

    Article  ADS  Google Scholar 

  32. L. Iorio, “Constraints on the location of a putative distant massive body in the Solar System from recent planetary data,” Cel. Mech. Dyn. Astron. 112, 117–130 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  33. L. Iorio, “Perspectives on effectively constraining the location of a massive trans-Plutonian object with the New Horizons spacecraft: a sensitivity analysis,” Cel. Mech. Dyn. Astron. 116, 357–366 (2013).

    Article  ADS  Google Scholar 

  34. L. Iorio, “A closer Earth and the faint young Sun paradox: Modification of the laws of gravitation or Sun/Earth mass losses?,” Galaxies 1, 192–209 (2013).

    Article  ADS  Google Scholar 

  35. L. Iorio, “Local cosmological effects of the order of H in the orbital motion of a binary system,” Mon. Not. R. Astron. Soc. 429, 915–922 (2013).

    Article  ADS  Google Scholar 

  36. L. Iorio, “Exact expressions for the pericenter precession caused by some dark matter distributions and constraints on them from orbital motions in the Solar System, in the Double Pulsar and in the Galactic Center,” Galaxies 1, 6–30 (2013).

    Article  ADS  Google Scholar 

  37. L. Iorio, “Perspectives on effectively constraining the location of a massive trans-Plutonian object with the New Horizons spacecraft: a sensitivity analysis,” Cel. Mech. Dyn. Astron. 116, 357–366 (2013).

    Article  ADS  Google Scholar 

  38. L. Iorio, “Constraints on a MOND effect for isolated aspherical systems in the deep Newtonian regime from orbital motions,” Class. Quantum Grav. 30, 165018 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  39. L. Iorio, “Two-body orbit expansion due to time-dependent relative acceleration rate of the cosmological scale factor,” Galaxies 2, 13–21 (2014).

    Article  ADS  Google Scholar 

  40. L. Iorio, “Modified theories of gravity with nonminimal coupling and orbital particle dynamics,” Class. Quant. Gravity 31, 085003 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  41. L. Iorio and E. N. Saridakis, “Solar system constraints on f(T) gravity,” Mon. Not. R. Astron. Soc. 427, 1555–1561 (2012).

    Article  ADS  Google Scholar 

  42. P. Jetzer and M. Sereno, “Two-body problem with the cosmological constant and observational constraints,” Phys. Rev. D 73, 044015 (2006).

    Article  ADS  Google Scholar 

  43. J. S. Kargel, “Mars—a Warmer, Wetter Planet,” (Springer, Praxis Books, 2004).

    Google Scholar 

  44. A. W. Kerr, J. C. Hauck, and B. Mashhoon, “Standard clocks, orbital precession and the cosmological constant,” Class. Quantum Gravity 20, 2727–2736 (2003).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  45. H. Kienert, G. Feulner, and V. Petoukhov, “Faint young Sun problem more severe due to ice-albedo feedback and higher rotation rate of the early Earth,” Geophys. Res. Lett. 39, L23710 (2012).

    Article  ADS  Google Scholar 

  46. E. Kokubo, S. Ida, and J. Makino, “Evolution of a circumterrestrial disk and formation of a single Moon,” Icarus 148, 419–436 (2000).

    Article  ADS  Google Scholar 

  47. G. A. Krasinsky and V. A. Brumberg, “Secular increase of astronomical unit from analysis of the major planet motions, and its interpretation,” Celest. Mech. Dyn. Astron. 90, 267–288 (2004).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  48. M. Křížek, “Numerical experience with the finite speed of gravitational interaction,” Math. Comput. Simulation 50, 237–245 (1999)

    Article  MathSciNet  Google Scholar 

  49. M. Křížek, “Does gravitational aberration contribute to the accelerated expansion of the Universe?,” Comm. Comput. Phys. 5, 1030–1044 (2009).

    Google Scholar 

  50. M. Křížek, “Dark energy and anthropic principle,” New Astron. 17, 1–7 (2012)

    Article  Google Scholar 

  51. M. Křížek, J. Brandts, and L. Somer, “Is gravitational aberration responsible for the origin of dark energy?,” in: Dark Energy: Theory, Implications and Roles in Cosmology, Ed. by C. A. Del Valle and D. F. Longoria (Nova Sci. Publishers, Inc., New York, 2012), pp. 29–57.

    Google Scholar 

  52. M. Křížek, F. Křížek, and L. Somer, “Which effects of galaxy clusters can reduce the amount of dark matter,” Bulg. Astron. J. 21, 1–23 (2014)

    Google Scholar 

  53. K. L. Lang, Cambridge Encyclopedia of the Sun (Cambridge Univ. Press, Cambridge, 2001).

    Google Scholar 

  54. L.-S. Li, “Secular influence of Solar dark-matter accretion upon the evolution of orbits of planets,” Publ. Astron. Soc. Japan 65, 107 (2013).

    ADS  Google Scholar 

  55. C. H. Linewaver and D. Schartzmann, “Cosmic thermobiology,” in: Origins, Ed. by J. Seckbach (Kluwer, Dordrecht, 2003), pp. 233–248.

    Google Scholar 

  56. P. S. Lykawka, “Trans-Neptunian objects as natural probes to the unknown Solar System,” Monographs on Environment, Earth and Planets 1, 121–186 (2012).

    Article  ADS  Google Scholar 

  57. V. Marra, L. Amendola, I. Sawicki, and W. Valkenburg, “Cosmic variance and the measurement of the local Hubble parameter,” Phys. Rev. Lett. 110, 241305 (2013).

    Article  ADS  Google Scholar 

  58. C. G. McVittie, “The mass-particle in expanding universe,” Mon. Not. R. Astron. Soc. 93, 325–339 (1933).

    Article  ADS  Google Scholar 

  59. C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (23rd edition, W. H. Freeman and Company, New York, 2000).

    Google Scholar 

  60. P. D. Noerdlinger, “Solar mass loss, the astronomical unit, and the scale of the Solar system,” ArXiv: 0801.3807.

  61. O. Novotný, Motions, Gravity Field and Figure of the Earth (Lecture Notes, Univ. Federal da Bahia, Salvador, 1998).

    Google Scholar 

  62. G. Pannella, “Paleontological evidence on the Earth’s rotation history since early precambrian,” Astrophys. Space Sci. 16, 212–237 (1972).

    Article  ADS  Google Scholar 

  63. M. L. Perl and H. Mueller, “Exploring the possibility of detecting dark energy in a terrestrial experiment using atom interferometry,” ArXiv: 1001.4061.

  64. J. T. Perron et al., “Evidence for an ancient Martian ocean in the topography of deformed shorelines,” Nature 447, 840–843 (2007).

    Article  ADS  Google Scholar 

  65. S. V. Pilipenko, “Paper-and-pencil cosmological calculator,” ArXiv: 1303.5961.

  66. N. P. Pitjev and E. V. Pitjeva, “Constraints on dark matter in the Solar System,” Astron. Lett. 39, 141–149 (2013).

    Article  ADS  Google Scholar 

  67. E. V. Pitjeva, “EPM ephemerides and relativity,” in: Relativity in Fundamental Astronomy: Dynamics, Reference Frames, and Data Analysis, 2009, Proc. IAU S261 (Cambridge Univ. Press, 2010), pp. 170–178.

    Google Scholar 

  68. E. V. Pitjeva and N. P. Pitjev, “Changes in the Sun’s mass and gravitational constant estimated using modern observations of planets and spacecraft,” Solar System Res. 46, 78–87 (2012).

    Article  ADS  Google Scholar 

  69. E. V. Pitjeva and N. P. Pitjev, “Relativistic effects and dark matter in the Solar system from observations of planets and spacecrafts,” Mon. Not. R. Astron. Soc. (2013).

    Google Scholar 

  70. Planck Collaboration, “Planck 2013 results. XVI. Cosmological parameters,” ArXiv: 1303.5076.

  71. P. Rosenblatt, “The origin of the Martian moons revisited,” Astron. Astrophys. Rev. 19, #44 (2011).

    Article  ADS  Google Scholar 

  72. I. J. Sackmann, I. A. Boothroyd, and K. E. Kraemer, “Our Sun. III. Present and future,” Astrophys. J. 418, 457–468 (1993).

    Article  ADS  Google Scholar 

  73. C. Sagan, “Reducing greenhouses and the temperature history of Earth and Mars,” Nature 269, 224–226 (1977).

    Article  ADS  Google Scholar 

  74. C. Sagan and G. Mullen, “Earth and Mars: Evolution of atmospheres and surface temperatures,” Science 177, 52–56 (1972).

    Article  ADS  Google Scholar 

  75. C. Sagan, O. B. Toon, and P. J. Gierasch, “Climatic change on Mars,” Science 181, 1045–1049 (1973).

    Article  ADS  Google Scholar 

  76. S. S. Said and F. R. Stephenson, “Solar and lunar eclipse measurements by medieval Muslim astronomers,” J. Hist. Astronom. 27, 259–273 (1996).

    ADS  MathSciNet  Google Scholar 

  77. X. Shi and M. S. Turner, “Expectations for the difference between local and global measurements of the Hubble constant,” Astrophys. J. 493, 519–522 (1998).

    Article  ADS  Google Scholar 

  78. N. S. Sidorenkov, Physics of the Earth’s Rotation Instabilities (Nauka-Fizmatlit, Moscow, 2002) [in Russian].

    Google Scholar 

  79. E. M. Standish, “Planet X: no dynamical evidence in the optical observations,” Astron. J. 105, 2000–2006 (1993).

    Article  ADS  Google Scholar 

  80. F. R. Stephenson, “Historical eclipses and Earth’s rotation,” Astron. & Geophys. 44, 22–27 (2003).

    Article  Google Scholar 

  81. Ch. A. Trujillo and S. S. Sheppard, “A Sedna-like body with a perihelion of 80 astronomical units,” Nature 507, 471–474 (2014).

    Article  ADS  Google Scholar 

  82. T. C. van Flandern, “A determination of the rate of change of G,” Mon. Not. R. Astron. Soc. 170, 333–342 (1975).

    Article  ADS  Google Scholar 

  83. F. Verbund, “The Earth and Moon: from Halley to lunar ranging and shells,” preprint, Utrecht Univ. (2002).

    Google Scholar 

  84. L. Verde, R. Jimenez, and S. Feeney, “The importance of local measurements for cosmology,” ArXiv: 1303.5341.

  85. J. W. Wells, “Coral growth and geochronometry,” Nature 197, 948–950 (1963).

    Article  ADS  Google Scholar 

  86. G. E. Williams, “Geological constraints on the Precambrian history of Earth’s rotation and the Moon’s orbit,” Rev. Geophys. 38, 37–60 (2000).

    Article  ADS  Google Scholar 

  87. J.G. Williams, D. H. Boggs, C.F. Yoder, J. T. Ratcliff, and J.O. Dickey, “Lunar rotational dissipation in solid body and molten core,” J. Geophys. Res. 106, 27933–27968 (2001).

    Article  ADS  Google Scholar 

  88. C. F. Yoder et al., “Secular variation of Earth’s gravitational harmonic J 2 coefficient from Lageos and nontidal acceleration of Earth rotation,” Nature 303, 757–762 (1983).

    Article  ADS  Google Scholar 

  89. W. J. Zhang and N. Kelley, “Multiplicative-generated dark matter accelerated cosmic expansion,” Adv. Sci. Lett. 4, 574–576 (2011).

    Article  Google Scholar 

  90. W. J. Zhang, Z. B. Li, and Y. Lei, “Experimental measurements of growth patterns on fossil corals: Secular variation in ancient Earth-Sun distance,” Chinese Sci. Bull. 55, 4010–4017 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Křížek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Křížek, M., Somer, L. Manifestations of dark energy in the solar system. Gravit. Cosmol. 21, 59–72 (2015). https://doi.org/10.1134/S0202289315010090

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289315010090

Keywords

Navigation