Skip to main content
Log in

The origin of the Martian moons revisited

  • Published:
The Astronomy and Astrophysics Review Aims and scope

Abstract

The origin of the Martian moons, Phobos and Deimos, is still an open issue: either they are asteroids captured by Mars or they formed in situ from a circum-Mars debris disk. The capture scenario mainly relies on the remote-sensing observations of their surfaces, which suggest that the moon material is similar to outer-belt asteroid material. This scenario, however, requires high tidal dissipation rates inside the moons to account for their current orbits around Mars. Although the in situ formation scenarios have not been studied in great details, no observational constraints argue against them. Little attention has been paid to the internal structure of the moons, yet it is pertinent for explaining their origin. The low density of the moons indicates that their interior contains significant amounts of porous material and/or water ice. The porous content is estimated to be in the range of 30–60% of the volume for both moons. This high porosity enhances the tidal dissipation rate but not sufficiently to meet the requirement of the capture scenario. On the other hand, a large porosity is a natural consequence of re-accretion of debris at Mars’ orbit, thus providing support to the in situ formation scenarios. The low density also allows for abundant water ice inside the moons, which might significantly increase the tidal dissipation rate in their interiors, possibly to a sufficient level for the capture scenario. Precise measurements of the rotation and gravity field of the moons are needed to tightly constrain their internal structure in order to help answering the question of the origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson JD et al. (2005) Amalthea’s density is less than that of water. Science 308:1291–1293

    Article  ADS  Google Scholar 

  • Andert TP, Rosenblatt P, Pätzold M, Häusler B, Dehant V, Tyler GL, Marty JC (2010) Precise mass determination and the nature of Phobos. Geophys Res Lett 37:(1–4). doi:10.1029/2009GL041829

  • Andert TP, Rosenblatt P, Pätzold M, Häusler B, Tyler GL (2011) The internal structure of Phobos and hints to its origin derived from Mars Express radio-science observations. In: Second international conference on the exploration of Phobos and Deimos, p 7. Abstract (11-015)

    Google Scholar 

  • Asphaug E, Ryan EV, Zuber MT (2002) Asteroid interiors. In: Bottke B, Cellino A, Paolocchi P, Binzel R (eds) Asteroids III. University of Arizona Press, Tucson, pp 463–484

    Google Scholar 

  • Avanesov G et al. (1991) Results of TV imaging of Phobos—experiment VSK-Fregat. Planet Space Sci 39:281–295

    Article  ADS  Google Scholar 

  • Bibring JP et al. (1989) Results from the ISM experiment. Nature 341:591–593

    Article  ADS  Google Scholar 

  • Bills BG, Neumann GA, Smith DE, Zuber MT (2005) Improved estimate of tidal dissipation within Mars from MOLA observations of the shadow of Phobos. J Geophys Res 110. doi:10.1029/2004JE002376

  • Borderies N, Yoder CF (1990) Phobos’ gravity field and its influence on its orbit and physical librations. Astron Astrophys 233:235–251

    ADS  Google Scholar 

  • Britt DT, Pieters CM (1989) Bidirectional reflectance characteristics of black chondrite meteorites. Lunar Planet Sci Conf XX:109–110

    ADS  Google Scholar 

  • Britt DT, Yeomans D, Housen K, Consolmagno G (2002) Asteroid density, porosity, and structure. In: Bottke B, Cellino A, Paolocchi P, Binzel R (eds) Asteroids III. University of Arizona Press, Tucson, pp 485–500

    Google Scholar 

  • Britt DT, Consolmagno GJ (2008) Dark asteroids and drak meteorite densities. Lunar Planet Sci Conf XXIX:1577 (abstract)

    Google Scholar 

  • Brown PG et al. (2000) The fall, recovery, orbit and composition of the Tagish Lake meteorite: A new type of carbonaceous chondrite. Science 290:320–325

    Article  ADS  Google Scholar 

  • Burns JA (1992) Contradictory clues as to the origin of the Martian moons. In: Kieffer HH, Jakosky BM, Snyder CW, Matthews MS (eds) Mars. University of Arizona Press, Tucson, pp 1283–1301

    Google Scholar 

  • Busch MW et al. (2007) Arecibo radar observations of Phobos and Deimos. Icarus 186:581–584

    Article  ADS  Google Scholar 

  • Cameron AGW (1986) The impact theory for origin of the Moon. In: Hartmann WK, Phillips RJ, Taylor GJ (eds) Origin of the Moon. Lunar and Planetary Institute, Houston, pp 609–616

    Google Scholar 

  • Canup RM (2004) Simulations of a late lunar-forming impact. Icarus 168:433–456

    Article  ADS  Google Scholar 

  • Castillo-Rogez JC, Rosenblatt P, Rambaux N, Le Maistre S (2011) Attenuation properties of Phobos as a discriminant of its origin and internal structure. In: Second international conference on the exploration of Phobos and Deimos, p 10. Abstract (11-002)

    Google Scholar 

  • Cazenave A, Dobrovolskis A, Lago B (1981) Orbital history of the Martian satellites with inferences on their origin. Icarus 44:730–744

    Article  ADS  Google Scholar 

  • Charnoz S, Salmon J, Crida A (2010) The recent formation of Saturn’s small moons from viscous spreading of the main rings. Nature 465:752–754

    Article  ADS  Google Scholar 

  • Clark BE, Hapke B, Pieters C, Britt D (2002) Asteroid space weathering and regolith evolution. In: Bottke B, Cellino A, Paolocchi P, Binzel R (eds) Asteroids III. University of Arizona Press, Tucson, pp 585–599

    Google Scholar 

  • Consolmagno GJ, Britt DT, Macke RJ (2008) The significance of meteorite density and porosity. Chem Erde 68:1–29

    Article  Google Scholar 

  • Craddock RA (1994) The origin of Phobos and Deimos. Lunar Planet Sci XXV:293–294

    ADS  Google Scholar 

  • Craddock RA (2011) Are Phobos and Deimos the result of a giant impact? Icarus 211:1150–1161

    Article  ADS  Google Scholar 

  • Dobrovolskis AR (1982) Internal stresses in Phobos and other triaxial bodies. Icarus 52:136–148

    Article  ADS  Google Scholar 

  • Efroimsky M, Lazarian A (2000) Inelastic dissipation in wobbling asteroids and comets. Mon Not R Astron Soc 311:269–278

    Article  ADS  Google Scholar 

  • Efroimsky M, Lainey V (2007) Physics of bodily tides in terrestrial planets and the appropriate scales of dynamical evolution. J Geophys Res 112. doi:10.1029/2007JE002908

  • Fanale FP, Salvail JR (1989) Loss of water from Phobos. Geophys Res Lett 16(4):287–290

    Article  ADS  Google Scholar 

  • Fanale FP, Salvail JR (1990) Evolution of the water regime of Phobos. Icarus 88:380–395

    Article  ADS  Google Scholar 

  • Gaffey MJ (2010) Space weathering and the interpretation of asteroid reflectance spectra. Icarus. doi:10.1016/j.icarus.2010.05.006

    Google Scholar 

  • Gendrin A, Langevin Y, Erard S (2005) ISM observation of Phobos reinvestigated: identification of a mixture of olivine and low-calcium pyroxene. J Geophys Res 110. doi:10.1029/2004JE002245

  • Giuranna M, Roush TL, Duxbury T, Hogan RC, Carli C, Geminale A, Formisano V (2011) Compositional interpretation of PFS/MEX and TES/MGS thermal infrared spectra of Phobos. Planet Space Sci. doi:10.1016/j.pss.2011.01.019

    Google Scholar 

  • Goldreich P, Sari R (2009) Tidal evolution of rubble piles. Astrophys J 691:54–60

    Article  ADS  Google Scholar 

  • Gondet B, Bibring J-P, Langevin Y, Poulet F, Murchie S, the OMEGA Science team (2008) Phobos observations by the OMEGA/Mars Express hyperspectral imager. Lunar Planet Sci Conf XXXIX:1832 (abstract)

    ADS  Google Scholar 

  • Gomes R et al. (2005) Origin of the cataclysmic late heavy bombardment period of the terrestrial planets. Nature 435:466–469

    Article  ADS  Google Scholar 

  • Gradie J, Tedesco E (1982) Compositional structure of the asteroid belt. Science 216:1405–1407

    Article  ADS  Google Scholar 

  • Hamelin M (2011) Motion of blocks on the surface of Phobos: new constraints for the formation of grooves. Planet Space Sci, in press

  • Hartmann WK (1976) Planet formation: compositional mixing and Lunar compositional anomalies. Icarus 27:553–559

    Article  ADS  MathSciNet  Google Scholar 

  • Hildebrand AR, McCausland PJA, Brown PG, Longstaffe FJ, Russell SDJ, Tagliaferri E, Wacker JF, Mazur MJ (2006) The fall and recovery of the Tagish Lake meteorite. Meteorit Planet Sci 41:407–431

    Article  ADS  Google Scholar 

  • Hiroi T, Zolensky ME, Pieters CM (2001) The Tagish Lake meteorite: a possible sample from a D-type asteroid. Science 293. doi:10.1126/science.1063734

  • Hunten DM (1979) Capture of Phobos and Deimos by protoatmospheric drag. Icarus 37:113–128

    Article  ADS  Google Scholar 

  • Ivanov A, Zolensky M (2003) The Kaidun meteorite: where did it come from? Lunar Planet Sci Conf XXXIV:1236 (abstract)

    ADS  Google Scholar 

  • Ivanov AV (2004) Is the Kaidun meteorite a sample from Phobos? Sol Syst Res 38(2):97–107

    Article  ADS  Google Scholar 

  • Jacobson RA (2010) The orbits and masses of the Martian satellites and the libration of Phobos. Astron J 139:668–679

    Article  ADS  Google Scholar 

  • Jaeger JC, Cook NGW, Zimmerman RW (2007) Fundamentals of rock mechanics, 4th edn. Blackwell, Malden, p 475

    Google Scholar 

  • Johnson TV, Lunine JI (2005) Saturn’s moon Phoebe as a captured body from the outer solar system. Nature 435:69–71

    Article  ADS  Google Scholar 

  • Kilgore TR, Burns JA, Pollack JB (1978) Orbital evolution of Phobos following its capture. Bull Am Astron Soc 10:593

    ADS  Google Scholar 

  • Lacerda P, Jewitt DC (2007) Densities of Solar system objects from their rotational light curves. Astron J 133:1393–1408

    Article  ADS  Google Scholar 

  • Lainey V, Dehant V, Pätzold M (2007) First numerical ephemerides of the Martian moons. Astronomy and Astrophysics 465. doi:10.1051/0004-6361:20065466

  • Lambeck K (1979) On the orbital evolution of the Martian satellites. J Geophys Res B 84(10):5651–5658

    Article  Google Scholar 

  • Laskar J, Robutel P (1993) The chaotic obliquity of the planets. Nature 361:608–612

    Article  ADS  Google Scholar 

  • Le Maistre S, Rosenblatt P, Rambaux N, Castillo-Rogez JC, Dehant V, Marty JC (2011) Phobos-Grunt experiments to measure Phobos’ librations. In EPSC-DPS 2011 p 1021 (abstract)

    Google Scholar 

  • Lunine JI (2006) Origin of water ice in the solar system. In: Lauretta DS, McSween HY (eds) Meteorites in the early solar system II. University Press of Arizona, Tucson, pp 309–319

    Google Scholar 

  • Marchis F et al. (2006) A low density of 0.8 g/cm3 for the Trojan binary asteroid 617 Patroclus. Nature 439:565–567

    Article  ADS  Google Scholar 

  • Martynov M, Khartov V (2011) Phobos–Soil mission concept and current status of development. In: First Moscow solar system symposium, p 67 (abstract)

    Google Scholar 

  • McCarthy MC, Castillo-Rogez JC (2011) Planetary ice attenuation properties. In: Gudipati M, Castillo-Rogez JC (eds) The science of solar system ices, in press

    Google Scholar 

  • Michel P, Agnolon D, Brucato J, Gondet B, Korablev O, Koschny D, Schmitz N, Willner K, Zacharov A (2011) MMSR—a study for a Martian moon sample return. In EPSC-DPS joint meeting 2011, p 849 (abstract)

    Google Scholar 

  • Mignard F (1981) Evolution of the Martian satellites. Mon Not R Astron Soc 194:365–379

    MATH  ADS  Google Scholar 

  • Moroz LV, Hiroi T, Shingareva TV, Basilevsky AT, Fisenko AV, Semjonova LF, Pieters CM (2004) Reflectance spectra of CM2 chondrite Mighei irradiated with pulsed LASER and implications for low-albedo asteroids and Martian moons. Lunar Planet Sci XXXV:1279 (abstract)

    ADS  Google Scholar 

  • Munk W, MacDonald GJF (1960) The rotation of the Earth: A geophysical discussion. Cambridge Univ. Press, New York

    Google Scholar 

  • Murchie SD et al. (1991) Color heterogeneity of the surface of Phobos: Relationships of geological features and comparison to meteorite analogs. J Geophys Res 96:5925–5945

    Article  ADS  Google Scholar 

  • Murchie S, Erard S (1996) Spectral properties and heterogeneity of Phobos from measurements by Phobos 2. Icarus 123:63–86

    Article  ADS  Google Scholar 

  • Murchie S, Choo T, Humm D, Rivkin A, Bibring JP, Langevin Y, Gondet B, Roush T, Duxbury T, the CRISM team (2008) MRO/CRISM observations of Phobos and Deimos. Lunar Planet Sci XXXIX:1434 (abstract)

    ADS  Google Scholar 

  • Murray JB, Iliffe JC, Muller JPAL, Neukum G, Werner S, Balme M, the HRSC Co-Investigator team (2006) New evidence on the origin of Phobos’ parallel grooves from HRSC Mars Express. Lunar Planet Sci Conf XXXVII:2195 (abstract)

    ADS  Google Scholar 

  • Oberst J, Lainey V, Le Poncin-Lafitte C, Dehant V, Rosenblatt P, Ulamec S, Biele J, Hoffmann H, Willner K, Schreiber U, Rambaux N, Laurent P, Zakharov A, Foulon B, Gurvits L, Murchie S, Reed C, Turyshev SG, the GETEMME team (2011) GETEMME: a mission to explore the Martian satellites and the fundamentals of solar system physics. In: Second international conference on the exploration of Phobos and Deimos, p 26. Abstract (11-007)

    Google Scholar 

  • Palomba E, D’amore M, Esposito F, Colangeli L, Maturelli A, Formasino V, the PFS international team (2005) Thermal infrared observations of Phobos. Mars Exp Sci Conf I:228 (abstract)

    Google Scholar 

  • Palomba E, D’Amore M, Zinzi A, Maturilli A, D’Aversa E, Helbert J (2010) Revisiting the thermal infrared spectral observations of Phobos. Lunar Planet Sci Conf XXXI:1899 (abstract)

    Google Scholar 

  • Pang KD, Pollack JB, Veverka J, Lane AL, Ajello JM (1978) The composition of Phobos—evidence for carbonaceous chondrite surface from spectral analysis. Science 199:64–66

    Article  ADS  Google Scholar 

  • Peale SJ (2007) The origin of the natural satellites. In: Schubert G, Spohn T (eds) Treatise on geophysics, vol 10, pp 465–508

    Chapter  Google Scholar 

  • Pieters CM (2010) Compositional implications of the color of Phobos. In: First Moscow solar system symposium, p 43 (abstract)

    Google Scholar 

  • Pollack JB (1977) Phobos and Deimos: A review. In: Burns J (ed) Planetary satellites. University of Arizona Press, Tucson, pp 319–345

    Google Scholar 

  • Pollack JB, Veverka J, Pang KD, Colburn DS, Lane AL, Ajello JM (1978) Multicolor observations of Phobos with the Viking lander cameras—evidence for a carbonaceous chondritic composition. Science 199:66–69

    Article  ADS  Google Scholar 

  • Pollack JB, Burns JA, Tauber ME (1979) Gas drag in circumplanetary envelopes: a mechanism for satellite capture. Icarus 37:587–611

    Article  ADS  Google Scholar 

  • Rambaux N, Le Maistre S, Rosenblatt P, Castillo-Rogez JC (2011) Rotational motion of Phobos. In: Second international conference on the exploration of Phobos and Deimos, p 28. Abstract (11-022)

    Google Scholar 

  • Richardson DC, Leinhardt ZM, Melosh HJ, Bottke WF Jr, Asphaug E (2002) Gravitational aggregates: evidence and evolution. In: Bottke B, Cellino A, Paolocchi P, Binzel R (eds) Asteroids III. University of Arizona Press, Tucson, pp 501–515

    Google Scholar 

  • Rivkin AS, Brown RH, Trilling DE, Bell JF III, Plassman JH (2002) Near-Infrared spectrophotometry of Phobos and Deimos. Icarus 156. doi:10.1006/icar.2001.6767

  • Rosenblatt P, Lainey V, Le Maistre S, Marty JC, Dehant V, Pätzold M, Van Hoolst T, Häusler B (2008) Accurate Mars Express orbits to improve the determination of the mass and ephemeris of the Martian moons. Planet Space Sci 56. doi:10.1016/j.pss.2008.02.004

  • Rosenblatt P, Rivoldini A, Le Maistre S, Dehant V (2010) The internal structure and the origin of Phobos. In: First Moscow solar system symposium, p 29 (abstract)

    Google Scholar 

  • Rosenblatt P, Charnoz S (2011) On the formation of the Martian moons from gravitational instabilities within a circum-Mars accretion disk. In: Second international conference on the exploration of Phobos and Deimos, p 30. Abstract (11-008)

    Google Scholar 

  • Rosenblatt P, Rivoldini A, Dehant V (2011) Modeling the internal structure mass distribution inside Phobos. In: Second international conference on the exploration of Phobos and Deimos, p 32. Abstract (11-006)

    Google Scholar 

  • Roush TL, Hogan RC (2000) Mars global surveyor thermal emission spectrometer observations of Phobos. Lunar Planet Sci XXXII:1598 (abstract)

    Google Scholar 

  • Safronov VS et al. (1986) Protosatellite swarms. In: Bruns JA, Matthews MS (eds) Satellites. University of Arizona Press, Tucson, pp 89–116

    Google Scholar 

  • Sasaki S (1990) Origin of Phobos—aerodynamic drag capture by the primary atmosphere of Mars. Lunar Planet Sci XXI:1069–1070 (abstract)

    ADS  Google Scholar 

  • Sharma I (2009) The equilibrium of rubble-pile satellites: The Darwin and Roche ellipsoids for gravitationally held granular aggregates. Icarus. doi:10.1016/j.icarus.2008.11.027

    Google Scholar 

  • Sharpless BP (1945) Secular accelerations in the longitudes of the satellites of Mars. Astron J 51:185–195

    Article  ADS  Google Scholar 

  • Shishov VA (2008) Determination of spacecraft and Phobos parameters of motion in the Phobos-Grunt project. Sol Syst Res 42(4):319–328

    Article  ADS  Google Scholar 

  • Schultz PH, Lutz-Garihan AB (1982) Grazing impacts on Mars: A record of lost satellites. Proc Lunar Sci Conf 13, J Geophys Res Suppl 87:A84–A96

    ADS  Google Scholar 

  • Sinclair AT (1989) The orbits of the satellites of Mars determined from Earth-based and spacecraft observations. Astron Astrophys 220:321–328

    ADS  Google Scholar 

  • Singer SF (2003) Origin of the Martian satellites Phobos and Deimos. In: Workhop on the exploration of Phobos and Deimos, p 7020 (abstract)

    Google Scholar 

  • Singer SF (2007) Origin of the Martian satellites Phobos and Deimos. In: Workhop on the exploration of Phobos and Deimos, p 7020 (abstract)

    Google Scholar 

  • Smith DE, Lemoine FG, Zuber MT (1995) Simultaneous estimation of the masses of Mars, Phobos, and Deimos using spacecraft distant encounters. Geophys Res Lett 22:2171–2174

    Article  ADS  Google Scholar 

  • Szeto AMK (1983) Orbital evolution and origin of the Martian satellites. Icarus 55:133–168

    Article  ADS  Google Scholar 

  • Thomas P, Veverka J (1980) Crater densities on the satellites of Mars. Icarus 41:365–380

    Article  ADS  Google Scholar 

  • Thomas P, Veverka J, Bell J, Lunine J, Cruikshank D (1992) Satellites of Mars: geologic history. In: Kieffer HH, Jakosky BM, Snyder CW, Matthews MS (eds) Mars. University of Arizona Press, Tucson, pp 1257–1282

    Google Scholar 

  • Thomas PC (1993) Gravity, tides, and topography of small satellites and asteroids: application to surface features of the Martian satellites. Icarus 105:326–344

    Article  ADS  Google Scholar 

  • Thomas N, Stelter R, Ivanov A, Bridges NT, Herkenhoff KE, McEwen AS (2010) Spectral heterogeneity on Phobos and Deimos: HiRiSE observations and comparisons to Mars pathfinder results. Planet Space Sci. doi:10.1016/j.pss.2010.04.018

    Google Scholar 

  • Tsiganis K et al. (2005) Origin of the orbital architecture of the giant planets of the solar system. Nature 435:459–461

    Article  ADS  Google Scholar 

  • Vernazza P et al. (2010) Origin of the Martian moons: Investigating their surface composition. In: EPSC Vol 5:EPSC2010-262 (abstract)

    Google Scholar 

  • Willner K, Oberst J, Hussmann H, Giese B, Hoffmann H, Matz K-D, Roatsch T, Duxbury T (2010) Phobos control points network, rotation, and shape. Earth Planet Sci Lett 294:541–546

    Article  ADS  Google Scholar 

  • Yoder CF (1982) Tidal rigidity of Phobos. Icarus 49:327–346

    Article  ADS  Google Scholar 

  • Zelenyi L, Zakharov A (2011) Scientific program of the Phobos–Soil mission. In: First Moscow solar system symposium, p 65 (abstract)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Rosenblatt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenblatt, P. The origin of the Martian moons revisited. Astron Astrophys Rev 19, 44 (2011). https://doi.org/10.1007/s00159-011-0044-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s00159-011-0044-6

Keywords

Navigation