Skip to main content
Log in

Stability analysis in N-dimensional gravitational collapse with an equation of state

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

We study the stability of occurrence of black holes and naked singularities that arise as the final states of a complete gravitational collapse of type I matter field in a spherically symmetric N-dimensional spacetime, with the equation of state p = kρ, 0 ≤ k ≤ 1. We prove that for a regular initial data comprising pressure (or density) profiles at an initial surface t = ti, from which the collapse evolves, there exists a large class of velocity functions and classes of solutions of Einstein equations such that the spacetime evolution goes to a final state which is either a black hole or a naked singularity. We use suitable function spaces for regular initial data leading the collapse to a black hole or a naked singularity and show that these data form an open subset of the set of all regular initial data. In this sense, both outcomes of collapse are stable. These results are discussed and analyzed in the light of the cosmic censorship hypothesis in black hole physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. C. Tolman, Proc. Natl. Acad. Sci. 20, 169 (1934).

    Article  ADS  Google Scholar 

  2. J. R. Oppenheimer and H. Snyder, Phys. Rev. 56, 455 (1939).

    Article  ADS  MATH  Google Scholar 

  3. P. C. Vaidya, Proc. of the Indian Acad. Sci. A 33, 264 (1951).

    ADS  MATH  MathSciNet  Google Scholar 

  4. A. Papapetrou, “Formation of a Singularity and causality,” in “A Random Walk in Relativity and Cosmology” (Wiley Eastern, New Delhi, 1985).

    Google Scholar 

  5. Y. Kuroda, Prog. Theor. Phys. 72, 63 (1984).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. D. M. Eardley and L. Smarr, Phys. Rev. D 19, 2239 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  7. D. Christoudolou, Comm. Math. Phys. 93, 171 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  8. A. Ori and T. Piran, Phys. Rev. D 42, 1068 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  9. R. Goswami and P. S. Joshi, Phys. Rev. D 69, 104002 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  10. S. G. Ghosh and A. Beesham, Phys. Rev. D 64, 124005 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  11. A. Banerjee, U. Debnath, and S. Chakraborty, Int. J. Mod. Phys. D 12, 1255 (2003), gr-qc/0211099.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. K.D. Patil, S.H. Ghate, and R. V. Saraykar, Ind. Jour. of Pure and App. Maths. 33, 379 (2002).

    MATH  MathSciNet  Google Scholar 

  13. P. S. Joshi and I. H. Dwivedi, Class. Quantum Grav. 16, 41 (1999).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. P. S. Joshi, Pramana-J. Phys. 55, 529 (2000), grqc/0006101.

    Article  ADS  Google Scholar 

  15. P. S. Joshi and R. Goswami, Physical Review D 69, 064027 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  16. R. Goswami and P. S. Joshi, Class. Quantum Grav 21, 3645 (2004).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. A. Mahajan, R. Goswami, and P. S. Joshi, Phys. Rev. D 72, 024006 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  18. L. Randall and R. Sundram, Phys. Rev. Lett. 83, 3370 (1999).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. L. Randall and R. Sundram, Phys. Rev. Lett. 83, 4690 (1999).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. T. Kaluza, Sitz Preuss. Akad.Wiss.D 33, 966 (1921).

    Google Scholar 

  21. O. Klein, Z. Phys. 895 (1926).

    Google Scholar 

  22. S. B. Sarwe and R. V. Saraykar, Grav. & Cosmol. 10 4(40), 329 (2004).

    ADS  MATH  MathSciNet  Google Scholar 

  23. S. G. Ghosh, S. B. Sarwe, and R. V. Saraykar, Phys. Rev. D 66, 084006 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  24. N. Dadhich, S. G. Ghosh, and D. W. Deshkar, Int. J. Mod. Phys. A 20, 1495 (2005).

    Article  ADS  MATH  Google Scholar 

  25. R. Penrose, Riv. Nuovo Cimento 1, 252 (1969); in General Relativity, an Einstein Centenary Volume, edited by S. W. Hawking and W. Israel (Cambridge University Press, Cambridge, England, 1979).

    Google Scholar 

  26. R. Abraham and J. Marsden, Foundations of Mechanics, 2nd edition (The Benjamin/Cummings Publishing Company, Menlo park, CA, 1978).

    MATH  Google Scholar 

  27. S. B. Sarwe and R. V. Saraykar, Pramana, J. Phys. 65(1), 17 (2005).

    Article  ADS  Google Scholar 

  28. F. Verhulst, Non-linear Differential Equations and Dynamical Systems (Berlin: Springer, 1989).

    Google Scholar 

  29. S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-time (Cambridge University Press, Cambridge, 1973).

    Book  MATH  Google Scholar 

  30. R. Goswami and P. S. Joshi, Phys. Rev. D 76, 084026 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  31. R. V. Saraykar and S. H. Ghate, Class. Quantum Grav. 16, 281 (1999).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. P. S. Joshi, Daniele Malafarina, and R. V. Saraykar, Int. J. Mod. Phys. D 21(8), 12500036 (2012).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sarwe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarwe, S., Saraykar, R.V. Stability analysis in N-dimensional gravitational collapse with an equation of state. Gravit. Cosmol. 20, 282–289 (2014). https://doi.org/10.1134/S0202289314040124

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289314040124

Keywords

Navigation