Skip to main content
Log in

Methane Distribution in Lake Baikal Water

  • HYDROCHEMISTRY, HYDROBIOLOGY: ENVIRONMENTAL ASPECTS
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

Data on the distribution of methane concentration in water in the open water area and the northern end of Lake Baikal and in the source of the Angara R. collected in September 2016 and 2019 are analyzed. To apply correlation analysis, in addition to methane, various hydrochemical characteristics were also determined, including the temperature, pH, the concentrations of О2, suspended matter, Corg, Norg, Porg, mineral compounds of nitrogen and phosphorus. Methane concentration in Baikal water in 2016 varied within 0.44–3.41 µL/dm3 (on the average, 0.80 µL/dm3); in 2019, within 0.20–5.19 µL/dm3 (on the average, 1.22 µL/dm3). The maximal methane concentration was recorded in the water mass of the deepest central depression of the lake, and the minimal, in its southern depression. Among shallow areas, minimal methane concentrations were recorded in the coastal zone of Listvenichnyi Bay, and its maximal concentrations, in the northern part of the lake, into which many rivers empty, as well as in Selenginskoe shallows. Most stations, either deep-water or shallow, showed a peak of subsurface maximum of methane concentration at depths of 25–50 m (thermocline zone), after which its concentrations commonly dropped, reaching their minimal values either in the intermediate water mass or in bottom layers. Shallow areas, in addition to higher methane concentrations compared to deep-water areas, also featured a higher contrast in its vertical distribution in the water mass. The analysis of correlation relationships between the examined hydrochemical characteristics revealed significant direct correlations of methane concentration with the concentrations of Corg and Norg and an inverse correlation with O2 concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Gar’kusha, D.N. and Fedorov, Yu.A. Distribution of methane concentration in coastal areas of the Gulf of Petrozavodsk, Lake Onega, Water Resour., 2015, vol. 42, no. 3, pp. 331–339.

    Article  Google Scholar 

  2. Gar’kusha, D.N. and Fedorov, Yu.A., Faktory formirovaniya kontsentratsii metana v vodnykh ekosistemakh (The Factors that Govern Methane Concentration Formation in Aquatic Ecosystems), Rostov-on-Don, Taganrog: Izd. Yuzhn. Federal. Univ., 2021.

  3. Gar’kusha, D.N., Fedorov, Yu.A., Tambieva, N.S., Andreev, Yu.A., and Mikhailenko, O.A., Methane in water and bottom sediments of Lake Baikal, Water Resour., 2019, vol. 46, no. 5, pp. 726–737.

    Article  Google Scholar 

  4. Geodekyan, A.A., Avilov, V.I., and Avilova, S.D., Geoenvironmental studies of Baikal, Dokl. Akad. Nauk SSSR, 1990, vol. 310, no. 6, pp. 1442–1446.

    Google Scholar 

  5. Gosudarstvennyi doklad “O sostoyanii ozera Baikal i merakh po ego okhrane v 2017 godu” (State Report “On the Conditions of Lake Baikal and Measures for Its Protection in 2017”), Irkutsk: KTs Ekspert, 2018.

  6. Granin, N.G., Mizandrontsev, I.B., Kozlov, V.V., Tsvetova, E.A., Gnatovskii, R.Yu., Blinov, V.V., Aslamov, I.A., Kucher, K.M., Ivanov, V.G., and Zh-danov, A.A., Ring structure on the ice cover of Lake Baikal: analysis of experimental data and mathematical modeling, Geol. Geofiz., 2018, vol. 59, no. 11, pp. 1890–1903.

    Google Scholar 

  7. Granin, N.G., Mizandrontsev, I.B., Obzhirov, A.I., Vereshchagina, O.F., Gnatovskii, R.Yu., and Zhdanov, A.A., Oxidation of methane in the water column of Lake Baikal, Dokl. Earth Sci., 2013, vol. 451, part 1, pp. 784–786.

    Article  Google Scholar 

  8. Dagurova, O.P., Namsaraev, B.B., Kozyreva, L.P., Zemskaya, T.I., and Dulov L.E., Bacterial processes of the methane cycle in bottom sediments of Lake Baikal, Microbiology, 2004, vol. 73, no. 2, pp. 202–210.

    Article  Google Scholar 

  9. Zhizhchenko, B.P., Uglevodorodnye gazy (Hydrocarbon Gases), Moscow: Nedra, 1984.

  10. Zakharenko, A.S., Pimenov, N.V., Ivanov, V.G., and Zemskaya, T.I., Detection of methane in the water column at gas and oil seep sites in central and southern Lake Baikal, Microbiology, 2015, vol. 84, no. 1, pp. 90–97.

    Article  Google Scholar 

  11. Kiprushina, K.N., Seasonal dynamics of zooplankton vertical distribution in the open part of the Southern Baikal (Bol’shie Koty region), Izv. Irkutsk. Gos. Univ., Ser. Biol., Ekol., 2009, vol. 2, no. 1, pp. 39–44.

    Google Scholar 

  12. Kuz’min, M.M., Kalmychkov, G.V., Geletii, V.F., Gniluish, V.A., Goreglyad, A.V., Khakhaev, B.N., Pevzner, L.A., Kavai, L., Ioshida, N., Luchkov, A.D., Ponomarchuk, V.A., Kontorovich, A.E., Bazhin, N.M., Makhov, G.A., Dyadin, Yu.A., Kuznetsov, F.A., Larionov, E.G., Manakov, A.Yu., Smolyakov, B.S., Mandel’baum, M.M., and Zheleznyakov, N.K., The first find of gas-hydrates in the sedimentary rocks of Lake Baikal, Dokl. Earth Sci., 1998, vol. 362, no. 7, pp. 1029–1031.

  13. Lein, A.Yu. and Ivanov, M.V., Biogeokhimicheskii tsikl metana v okeane (Biogeochemical Cycle of Methane in the Ocean), Moscow: Nauka, 2009.

  14. Lut, B.F., Geomorphology of Baikal Region and Lake Baikal Depression, Extended Abstract of Doct. Sci. (Geogr.) Dissertation, Irkutsk: Inst. Geol. Geophys., Sib. Branch, USSR Acad. Sci., Irkutsk, 1988, p. 32.

  15. Makarov, M.M., Methane bubble releases from Baikal bottom sediments, Extended Abstract of of Cand. Sci. (Geogr.) Dissertation, POI FEB RAS, Irkutsk, 2016, p. 24.

  16. Mizandrontsev, I.B., Kozlov, V.V., Ivanov, V.G., Kucher, K.M., Korneva, E.S., and Granin, N.G., Vertical distribution of methane in Baikal water, Water Resour., 2020, vol. 47, no. 1, pp. 122–129.

    Article  Google Scholar 

  17. Namsaraev, B.B., Dulov, L.E., Sokolova, E.N., and Zemskaya, T.I., Bacterial methane production in Baikal Lake bottom sediments, Mikrobiologiya, 1995, vol. 64, no. 3, pp. 411–417.

    Google Scholar 

  18. Pestunov, D.A., Domysheva, V.M., Ivanov, V.G., Shamrin, A.M., and Panchenko, M.V., Spatial distribution of the direction of CO2 and CH4 fluxes over Baikal Lake water area (Around-Baikal Expedition, June, 2013), Opt. Atmos. Okeana, 2015, vol. 28, no. 9, pp. 792–800.

    Google Scholar 

  19. RD 52.24.512-2012 Ob’’emnaya kontsentratsiya metana v vodakh. Metodika izmerenii gazokhromatograficheskim metodom s ispol’zovaniem analiza ravnovesnogo para (Bulk Concentration of Methane in Water. Procedure of Measurement by Gas-Chromatographic Method with the Use of Equilibrium Vapor Analysis), Rostov-on-Don: Rosgidromet, Gidrokhem. Inst., 2012.

  20. Rukovodstvo po khimicheskomu analizu poverkhnostnykh vod sushi (Guide for Chemical Analysis of Continental Surface Water), Boeva, L.V, Ed., Rostov-on-Don: NOK, 2009.

  21. Fedorov, Yu.A., Nikanorov, A.M., and Tambieva, N.S., First data on the biogenic methane distribution in water and bottom sediments of Lake Baikal, Dokl. Earth Sci., 1997, vol. 353A, no. 3, pp. 424–426.

    Google Scholar 

  22. Fedorov, Yu.A., Tambieva, N.S., and Gar’kusha, D.N., Effect of natural and anthropogenic factors and processes on methane concentration distribution in water and bottom sediments of Lake Ladoga, Geoekol., Inzh. Geol., Gidrogeol., Geokriol., 2006, no. 5, pp. 412–424.

  23. Fedorov, Yu.A., Tambieva, N.S., and Gar’kusha, D.N., Methane as an indicator to the environmental conditions of freshwater bodies: case study of lakes Valdai and Uzhin, Meteorol Gidrol., 2004, no. 6, pp. 88–96.

  24. Fedorov, Yu.A., Stabil’nye izotopy i evolyutsiya gidrosfery (Stable Isotopes and Hydrosphere Evolution), Moscow: Tsentr “Istina” MO RF, 1999.

  25. Shimaraev, M.N., Troitskaya, E.S., and Gnatovskii, R.Yu., Variations of deep-water temperature in Lake Baikal in 1972–2007, Geogr. Prir. Resur., 2009, no. 3, pp. 68–76.

  26. Bianchi, M., Marty, D., Teyssie, J.-L., and Fowler, S.W., Strictly aerobic and anaerobic bacteria associated with sinking particulate matter and zooplankton fecal pellets, Mar. Ecol. Progress Ser., 1992, vol. 88, pp. 55–60.

    Article  Google Scholar 

  27. Conrad, R., The global methane cycle: recent advances in understanding the microbial processes involved, Environ. Microbial, 2009, Rep. 1, pp. 285–292.

    Google Scholar 

  28. Cynar, F.J. and Yayanos, A.A., Enrichment and characterization of methanogenic bacterium from the oxic upper layer of the ocean, Curr. Microbiol., 1991, vol. 23, pp. 89–96.

    Article  Google Scholar 

  29. Damm, E., Helmke, E., Thoms, S., Schauer, U., Nothig, E., Bakker, K., and Kiene, R.P., Methane production in aerobic surface water in central arctic ocean, Biogeosci., 2010, vol. 7, pp. 1099–1108.

    Article  Google Scholar 

  30. Granin, N.G., Makarov, M.M., Kucher, K.M., and Gnatovsky, R.Y., Gas seeps in Lake Baikal—detection, distribution, and implications for water column mixing, Geo-Mar. Lett., 2010, vol. 30, nos. 3, 4, pp. 399–409.

  31. Granin, N.G., Radzyminovich, N.A., Granina, L.Z., Blinov, V.V., and Gnatovsky, R.Yu., Freshening of near-bottom waters in Lake Baikal triggered by the Mw6. 2 Kultuk earthquake of August 2008, Geo-Mar. Lett., 2012, vol. 32, no. 5, pp. 453–464.

    Google Scholar 

  32. Grossart, H.-P., Frindte, K., Dziallas, C., et al., Microbial methane production in oxygenated water column of an oligotrophic lake, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, pp. 19657–19661.

    Article  Google Scholar 

  33. Izmest’eva, L.R., Moore, M.V., Hampton, S.E., Ferwerda, C.J., Gray, D.K., Woo, K.H., Pislegina, H.V., Krashchuk, L.S., Shimaraeva, S.V., and Silow, E.A., Lake-wide physical and biological trends associated with warming in Lake Baikal, J. Great Lakes Res., 2016, vol. 42, pp. 6–17.

    Article  Google Scholar 

  34. Kadnikov, V.V., Mardanov, A.V., Beletsky, A.V., Shubenkova, O.V., Pogodaeva, T.V., Zemskaya, T.I., Ravin, N.V., and Skryabin, K.G., Microbial community structure in methane hydrate-bearing sediments of freshwater Lake Baikal, Federation Eur. Microbiol. Soc. Microbiol. Ecol., 2012, vol. 79, pp. 348–358.

    Article  Google Scholar 

  35. Karl, D.N., Beversdorf, L., Bjorkman, K.M., Church, M.J., Martinez, A., and Delong, E.F., Aerobic production of methane in the sea, Nat. Geosci., 2008, vol. 1, pp. 473–478.

    Article  Google Scholar 

  36. Khlystov, O., De Batist, M., Shoji, H., Hachikubo, A., Nishio, S., Naudts, L., Poort, J., Khabuev, A., Belousov, O., Manakov, A., and Kalmychkov, G., Gas hydrate of Lake Baikal: discovery and varieties, Asian Earth Sci., 2013, vol. 62, no. 1, pp. 162–166.

    Article  Google Scholar 

  37. Leifer, I., Boles, J.R., Luyendyk, B.P., and Clark, J.F., Transient discharges from marine hydrocarbon seeps: spatial and temporal variability, Environ. Geol., 2004, vol. 46, no. 8, pp. 1038–1052.

    Article  Google Scholar 

  38. Murase, J. and Sugimoto, A., Inhibitory effect of light on methane oxidation in pelagic water column of a mesotrophic lake (Lake Biwa, Japan), Limnol. Oceanogr., 2005, vol. 50, pp. 1339–1343.

    Article  Google Scholar 

  39. Potyomkina, T.G., Baryshev, V.B., Grachev, A.M., and Potyomkin, V.L., Chemical composition of suspension in water body of Lake Baikal, Nucl. Instr. Meth. Phys. Res. A, 1998, vol. 405, pp. 543–545.

    Article  Google Scholar 

  40. Reeburgh, W.S., Oceanic methane biogeochemistry, Chem. Rev., 2007, vol. 107, pp. 486–513.

    Article  Google Scholar 

  41. Schmale, O., Greinert, J., and Rehder, G., Methane emission from high-intensity marine gas seeps in the Black Sea into the atmosphere, Geophys. Rev. Lett., 2005, vol. 32, no. 7, p. L07609.

    Article  Google Scholar 

  42. Granin, N.G., Kapitanov, V.A., McGinnis, D.F., Mizandrontsev, I.B., Obzhirov, A.I., and Wiiest, A., Sources and sinks of methane in Lake Baikal: a synthesis of measurements and modeling, Limnol. Oceanogr., 2007, vol. 52, no. 5, pp. 1824–1837.

    Article  Google Scholar 

  43. Tang, K.W., McGinnis, D.F., Frindte, K., Bruchert, V., and Grossart, H.-P., Paradox reconsidered: methane oversaturation in well-oxygenated lake waters, Limnol. Oceanogr., 2014, vol. 59, no. 1, pp. 275–284.

    Article  Google Scholar 

  44. Zemskaya, T., Egorov, A., Khlystov, O., Shubenkova, O., Namsaraev, B., Chernitsina, S., Dagurova, O., Kalmychkov, G., and Grachev, M., Biogeochemical cycles of methane in Lake Baikal, Geoph. Res. Abstr., 2005, vol. 7, p. 03994.

    Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, project 22-27-00671 in the Southern Federal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Gar’kusha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gar’kusha, D.N., Fedorov, Y.A., Tambieva, N.S. et al. Methane Distribution in Lake Baikal Water. Water Resour 50, 400–414 (2023). https://doi.org/10.1134/S0097807823020094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807823020094

Keywords:

Navigation